--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small AR results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ar split: None args: 'config: ar_de, split: test' metrics: - name: Wer type: wer value: 44.396092688480046 --- # Whisper Small Arabic This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3517 - Wer: 44.3961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2707 | 0.4119 | 1000 | 0.4188 | 51.3000 | | 0.2452 | 0.8237 | 2000 | 0.3639 | 46.1863 | | 0.1613 | 1.2356 | 3000 | 0.3470 | 44.9194 | | 0.1382 | 1.6474 | 4000 | 0.3398 | 45.0351 | | 0.1177 | 2.0593 | 5000 | 0.3502 | 44.5154 | | 0.1206 | 2.4712 | 6000 | 0.3501 | 44.9781 | | 0.1216 | 2.8830 | 7000 | 0.3423 | 43.5258 | | 0.072 | 3.2949 | 8000 | 0.3517 | 44.3961 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0