Upload BertForMaskedLM
Browse files- config.json +42 -0
- configuring_nt_bert.py +162 -0
- modeling_nt_bert.py +999 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "single_bp_2k_step19999",
|
3 |
+
"architectures": [
|
4 |
+
"BertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"attn_norm_layer_type": "layer_norm",
|
8 |
+
"attn_num_groups": 1,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuring_nt_bert.BertConfig",
|
11 |
+
"AutoModelForMaskedLM": "modeling_nt_bert.BertForMaskedLM"
|
12 |
+
},
|
13 |
+
"classifier_dropout": "None",
|
14 |
+
"embedding_norm_layer_type": "layer_norm",
|
15 |
+
"embedding_num_groups": 1,
|
16 |
+
"embedding_size": 1280,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 1280,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 5120,
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 2000,
|
24 |
+
"model_type": "bert",
|
25 |
+
"mup": true,
|
26 |
+
"num_attention_heads": 16,
|
27 |
+
"num_hidden_layers": 24,
|
28 |
+
"output_mult": 1,
|
29 |
+
"pad_token_id": 3,
|
30 |
+
"position_embedding_type": "alibi",
|
31 |
+
"prenorm": false,
|
32 |
+
"query_zero_init": false,
|
33 |
+
"readout_zero_init": false,
|
34 |
+
"summary_activation": "gelu",
|
35 |
+
"summary_last_dropout": 0.1,
|
36 |
+
"summary_type": "first",
|
37 |
+
"summary_use_proj": true,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.25.1",
|
40 |
+
"type_vocab_size": 2,
|
41 |
+
"vocab_size": 10
|
42 |
+
}
|
configuring_nt_bert.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class BertConfig(PretrainedConfig):
|
5 |
+
r"""
|
6 |
+
This is the configuration class to store the configuration of a :class:`~transformers.ElectraModel` or a
|
7 |
+
:class:`~transformers.TFElectraModel`. It is used to instantiate a ELECTRA model according to the specified
|
8 |
+
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
|
9 |
+
configuration to that of the ELECTRA `google/electra-small-discriminator
|
10 |
+
<https://huggingface.co/google/electra-small-discriminator>`__ architecture.
|
11 |
+
|
12 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
13 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
14 |
+
|
15 |
+
|
16 |
+
Args:
|
17 |
+
vocab_size (:obj:`int`, `optional`, defaults to 30522):
|
18 |
+
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
|
19 |
+
:obj:`inputs_ids` passed when calling :class:`~transformers.ElectraModel` or
|
20 |
+
:class:`~transformers.TFElectraModel`.
|
21 |
+
embedding_size (:obj:`int`, `optional`, defaults to 128):
|
22 |
+
Dimensionality of the encoder layers and the pooler layer.
|
23 |
+
hidden_size (:obj:`int`, `optional`, defaults to 256):
|
24 |
+
Dimensionality of the encoder layers and the pooler layer.
|
25 |
+
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
|
26 |
+
Number of hidden layers in the Transformer encoder.
|
27 |
+
num_attention_heads (:obj:`int`, `optional`, defaults to 4):
|
28 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
29 |
+
intermediate_size (:obj:`int`, `optional`, defaults to 1024):
|
30 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
31 |
+
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
|
32 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
33 |
+
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
|
34 |
+
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
|
35 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
36 |
+
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
|
37 |
+
The dropout ratio for the attention probabilities.
|
38 |
+
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
|
39 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
40 |
+
just in case (e.g., 512 or 1024 or 2048).
|
41 |
+
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
|
42 |
+
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.ElectraModel` or
|
43 |
+
:class:`~transformers.TFElectraModel`.
|
44 |
+
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
45 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
46 |
+
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
|
47 |
+
The epsilon used by the layer normalization layers.
|
48 |
+
summary_type (:obj:`str`, `optional`, defaults to :obj:`"first"`):
|
49 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
50 |
+
|
51 |
+
Has to be one of the following options:
|
52 |
+
|
53 |
+
- :obj:`"last"`: Take the last token hidden state (like XLNet).
|
54 |
+
- :obj:`"first"`: Take the first token hidden state (like BERT).
|
55 |
+
- :obj:`"mean"`: Take the mean of all tokens hidden states.
|
56 |
+
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
57 |
+
- :obj:`"attn"`: Not implemented now, use multi-head attention.
|
58 |
+
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
59 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
60 |
+
|
61 |
+
Whether or not to add a projection after the vector extraction.
|
62 |
+
summary_activation (:obj:`str`, `optional`):
|
63 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
64 |
+
|
65 |
+
Pass :obj:`"gelu"` for a gelu activation to the output, any other value will result in no activation.
|
66 |
+
summary_last_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
67 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
68 |
+
|
69 |
+
The dropout ratio to be used after the projection and activation.
|
70 |
+
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
|
71 |
+
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
|
72 |
+
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
|
73 |
+
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
|
74 |
+
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
|
75 |
+
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
|
76 |
+
<https://arxiv.org/abs/2009.13658>`__.
|
77 |
+
classifier_dropout (:obj:`float`, `optional`):
|
78 |
+
The dropout ratio for the classification head.
|
79 |
+
|
80 |
+
Examples::
|
81 |
+
|
82 |
+
>>> from transformers import ElectraModel, ElectraConfig
|
83 |
+
|
84 |
+
>>> # Initializing a ELECTRA electra-base-uncased style configuration
|
85 |
+
>>> configuration = ElectraConfig()
|
86 |
+
|
87 |
+
>>> # Initializing a model from the electra-base-uncased style configuration
|
88 |
+
>>> model = ElectraModel(configuration)
|
89 |
+
|
90 |
+
>>> # Accessing the model configuration
|
91 |
+
>>> configuration = model.config
|
92 |
+
"""
|
93 |
+
model_type = "bert"
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_size=30522,
|
98 |
+
embedding_size=128,
|
99 |
+
hidden_size=256,
|
100 |
+
num_hidden_layers=12,
|
101 |
+
num_attention_heads=4,
|
102 |
+
intermediate_size=1024,
|
103 |
+
hidden_act="gelu",
|
104 |
+
hidden_dropout_prob=0.1,
|
105 |
+
attention_probs_dropout_prob=0.1,
|
106 |
+
max_position_embeddings=512,
|
107 |
+
type_vocab_size=2,
|
108 |
+
initializer_range=0.02,
|
109 |
+
layer_norm_eps=1e-12,
|
110 |
+
summary_type="first",
|
111 |
+
summary_use_proj=True,
|
112 |
+
summary_activation="gelu",
|
113 |
+
summary_last_dropout=0.1,
|
114 |
+
pad_token_id=0,
|
115 |
+
position_embedding_type="absolute",
|
116 |
+
classifier_dropout=None,
|
117 |
+
prenorm=False,
|
118 |
+
mup=False,
|
119 |
+
embedding_norm_layer_type="layer_norm",
|
120 |
+
embedding_num_groups=1,
|
121 |
+
attn_norm_layer_type="layer_norm",
|
122 |
+
attn_num_groups=1,
|
123 |
+
output_mult=1,
|
124 |
+
readout_zero_init=False,
|
125 |
+
query_zero_init=False,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
129 |
+
|
130 |
+
self.vocab_size = vocab_size
|
131 |
+
self.embedding_size = embedding_size
|
132 |
+
self.hidden_size = hidden_size
|
133 |
+
self.num_hidden_layers = num_hidden_layers
|
134 |
+
self.num_attention_heads = num_attention_heads
|
135 |
+
self.intermediate_size = intermediate_size
|
136 |
+
self.hidden_act = hidden_act
|
137 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
138 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
139 |
+
self.max_position_embeddings = max_position_embeddings
|
140 |
+
self.type_vocab_size = type_vocab_size
|
141 |
+
self.initializer_range = initializer_range
|
142 |
+
self.layer_norm_eps = layer_norm_eps
|
143 |
+
# passing in 1e-x in config turns to string
|
144 |
+
if isinstance(self.layer_norm_eps, str):
|
145 |
+
self.layer_norm_eps = float(self.layer_norm_eps)
|
146 |
+
|
147 |
+
self.summary_type = summary_type
|
148 |
+
self.summary_use_proj = summary_use_proj
|
149 |
+
self.summary_activation = summary_activation
|
150 |
+
self.summary_last_dropout = summary_last_dropout
|
151 |
+
self.position_embedding_type = position_embedding_type
|
152 |
+
self.classifier_dropout = classifier_dropout
|
153 |
+
# transformers without tears suggests using prenorm
|
154 |
+
self.prenorm = prenorm
|
155 |
+
self.mup = mup
|
156 |
+
self.embedding_norm_layer_type = embedding_norm_layer_type
|
157 |
+
self.embedding_num_groups = embedding_num_groups
|
158 |
+
self.attn_norm_layer_type = attn_norm_layer_type
|
159 |
+
self.attn_num_groups = attn_num_groups
|
160 |
+
self.output_mult = output_mult
|
161 |
+
self.readout_zero_init = readout_zero_init
|
162 |
+
self.query_zero_init = query_zero_init
|
modeling_nt_bert.py
ADDED
@@ -0,0 +1,999 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from mup import MuReadout, set_base_shapes
|
9 |
+
from mup.init import normal_
|
10 |
+
from nt_transformer.models.nt_bert.configuring_nt_bert import BertConfig
|
11 |
+
from rotary_embedding_torch import RotaryEmbedding
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
14 |
+
MaskedLMOutput,
|
15 |
+
)
|
16 |
+
from transformers.modeling_utils import (
|
17 |
+
PreTrainedModel,
|
18 |
+
apply_chunking_to_forward,
|
19 |
+
find_pruneable_heads_and_indices,
|
20 |
+
get_activation,
|
21 |
+
prune_linear_layer,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
class BertPreTrainedModel(PreTrainedModel):
|
26 |
+
"""
|
27 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
28 |
+
models.
|
29 |
+
"""
|
30 |
+
|
31 |
+
config_class = BertConfig
|
32 |
+
base_model_prefix = "bert"
|
33 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
34 |
+
_keys_to_ignore_on_load_unexpected = [
|
35 |
+
r"bert\.embeddings_project\.weight",
|
36 |
+
r"bert\.embeddings_project\.bias",
|
37 |
+
]
|
38 |
+
|
39 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
40 |
+
def _init_weights(self, module, readout_zero_init=False, query_zero_init=False):
|
41 |
+
"""Initialize the weights"""
|
42 |
+
if isinstance(module, nn.Linear):
|
43 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
44 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
45 |
+
### muP: swap constant std normal init with normal_ from `mup.init`.
|
46 |
+
### Because `_init_weights` is called in `__init__`, before `infshape` is set,
|
47 |
+
### we need to manually call `self.apply(self._init_weights)` after calling
|
48 |
+
### `set_base_shape(model, base)`
|
49 |
+
if isinstance(module, MuReadout) and readout_zero_init:
|
50 |
+
module.weight.data.zero_()
|
51 |
+
else:
|
52 |
+
if hasattr(module.weight, "infshape"):
|
53 |
+
normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
54 |
+
else:
|
55 |
+
module.weight.data.normal_(
|
56 |
+
mean=0.0, std=self.config.initializer_range
|
57 |
+
)
|
58 |
+
### End muP
|
59 |
+
if module.bias is not None:
|
60 |
+
module.bias.data.zero_()
|
61 |
+
elif isinstance(module, nn.Embedding):
|
62 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
63 |
+
if module.padding_idx is not None:
|
64 |
+
module.weight.data[module.padding_idx].zero_()
|
65 |
+
elif isinstance(module, nn.LayerNorm):
|
66 |
+
module.bias.data.zero_()
|
67 |
+
module.weight.data.fill_(1.0)
|
68 |
+
### muP
|
69 |
+
if isinstance(module, BertSelfAttention):
|
70 |
+
if query_zero_init:
|
71 |
+
module.query.weight.data[:] = 0
|
72 |
+
|
73 |
+
@classmethod
|
74 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
75 |
+
model = super().from_pretrained(
|
76 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
77 |
+
)
|
78 |
+
|
79 |
+
# since we used MuP, need to reset values since they're not saved with the model
|
80 |
+
if os.path.exists("base_shapes.bsh") is False:
|
81 |
+
hf_hub_download(
|
82 |
+
"zpn/human_bp_bert", "base_shapes.bsh"
|
83 |
+
)
|
84 |
+
|
85 |
+
set_base_shapes(model, "base_shapes.bsh", rescale_params=False)
|
86 |
+
|
87 |
+
return model
|
88 |
+
|
89 |
+
|
90 |
+
class BertEmbeddings(nn.Module):
|
91 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__()
|
95 |
+
self.word_embeddings = nn.Embedding(
|
96 |
+
config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id
|
97 |
+
)
|
98 |
+
self.position_embeddings = nn.Embedding(
|
99 |
+
config.max_position_embeddings, config.embedding_size
|
100 |
+
)
|
101 |
+
self.token_type_embeddings = nn.Embedding(
|
102 |
+
config.type_vocab_size, config.embedding_size
|
103 |
+
)
|
104 |
+
|
105 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
106 |
+
# any TensorFlow checkpoint file
|
107 |
+
|
108 |
+
if config.embedding_norm_layer_type == "layer_norm":
|
109 |
+
self.norm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
110 |
+
elif config.embedding_norm_layer_type == "group_norm":
|
111 |
+
self.norm = nn.GroupNorm(
|
112 |
+
num_groups=config.embedding_num_groups,
|
113 |
+
num_channels=config.embedding_size,
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
raise ValueError(
|
117 |
+
f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}"
|
118 |
+
)
|
119 |
+
|
120 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
121 |
+
|
122 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
123 |
+
self.register_buffer(
|
124 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
125 |
+
)
|
126 |
+
self.position_embedding_type = getattr(
|
127 |
+
config, "position_embedding_type", "absolute"
|
128 |
+
)
|
129 |
+
|
130 |
+
self.register_buffer(
|
131 |
+
"token_type_ids",
|
132 |
+
torch.zeros(
|
133 |
+
self.position_ids.size(),
|
134 |
+
dtype=torch.long,
|
135 |
+
device=self.position_ids.device,
|
136 |
+
),
|
137 |
+
persistent=False,
|
138 |
+
)
|
139 |
+
|
140 |
+
def forward(
|
141 |
+
self,
|
142 |
+
input_ids=None,
|
143 |
+
token_type_ids=None,
|
144 |
+
position_ids=None,
|
145 |
+
inputs_embeds=None,
|
146 |
+
past_key_values_length=0,
|
147 |
+
):
|
148 |
+
if input_ids is not None:
|
149 |
+
input_shape = input_ids.size()
|
150 |
+
else:
|
151 |
+
input_shape = inputs_embeds.size()[:-1]
|
152 |
+
|
153 |
+
seq_length = input_shape[1]
|
154 |
+
|
155 |
+
if position_ids is None:
|
156 |
+
position_ids = self.position_ids[
|
157 |
+
:, past_key_values_length : seq_length + past_key_values_length
|
158 |
+
]
|
159 |
+
|
160 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
161 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
162 |
+
# issue #5664
|
163 |
+
if token_type_ids is None:
|
164 |
+
if hasattr(self, "token_type_ids"):
|
165 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
166 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
167 |
+
input_shape[0], seq_length
|
168 |
+
)
|
169 |
+
token_type_ids = buffered_token_type_ids_expanded
|
170 |
+
else:
|
171 |
+
token_type_ids = torch.zeros(
|
172 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
173 |
+
)
|
174 |
+
|
175 |
+
if inputs_embeds is None:
|
176 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
177 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
178 |
+
|
179 |
+
embeddings = inputs_embeds + token_type_embeddings
|
180 |
+
if self.position_embedding_type == "absolute":
|
181 |
+
position_embeddings = self.position_embeddings(position_ids)
|
182 |
+
embeddings += position_embeddings
|
183 |
+
|
184 |
+
if isinstance(self.norm, nn.GroupNorm):
|
185 |
+
# group norm only works over channel dim
|
186 |
+
reshaped = embeddings.permute(0, 2, 1)
|
187 |
+
embeddings = self.norm(reshaped)
|
188 |
+
embeddings = embeddings.permute(0, 2, 1)
|
189 |
+
else:
|
190 |
+
embeddings = self.norm(embeddings)
|
191 |
+
|
192 |
+
embeddings = self.dropout(embeddings)
|
193 |
+
return embeddings
|
194 |
+
|
195 |
+
|
196 |
+
class BertIntermediate(nn.Module):
|
197 |
+
def __init__(self, config):
|
198 |
+
super().__init__()
|
199 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
200 |
+
if isinstance(config.hidden_act, str):
|
201 |
+
self.intermediate_act_fn = get_activation(config.hidden_act)
|
202 |
+
else:
|
203 |
+
self.intermediate_act_fn = config.hidden_act
|
204 |
+
|
205 |
+
def forward(self, hidden_states):
|
206 |
+
hidden_states = self.dense(hidden_states)
|
207 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
208 |
+
return hidden_states
|
209 |
+
|
210 |
+
|
211 |
+
class BertLayer(nn.Module):
|
212 |
+
def __init__(self, config):
|
213 |
+
super().__init__()
|
214 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
215 |
+
self.seq_len_dim = 1
|
216 |
+
self.attention = BertAttention(config)
|
217 |
+
self.is_decoder = config.is_decoder
|
218 |
+
self.add_cross_attention = config.add_cross_attention
|
219 |
+
if self.add_cross_attention:
|
220 |
+
assert (
|
221 |
+
self.is_decoder
|
222 |
+
), f"{self} should be used as a decoder model if cross attention is added"
|
223 |
+
self.crossattention = BertAttention(config)
|
224 |
+
self.intermediate = BertIntermediate(config)
|
225 |
+
self.output = BertOutput(config)
|
226 |
+
|
227 |
+
def forward(
|
228 |
+
self,
|
229 |
+
hidden_states,
|
230 |
+
attention_mask=None,
|
231 |
+
head_mask=None,
|
232 |
+
encoder_hidden_states=None,
|
233 |
+
encoder_attention_mask=None,
|
234 |
+
past_key_value=None,
|
235 |
+
output_attentions=False,
|
236 |
+
):
|
237 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
238 |
+
self_attn_past_key_value = (
|
239 |
+
past_key_value[:2] if past_key_value is not None else None
|
240 |
+
)
|
241 |
+
self_attention_outputs = self.attention(
|
242 |
+
hidden_states,
|
243 |
+
attention_mask,
|
244 |
+
head_mask,
|
245 |
+
output_attentions=output_attentions,
|
246 |
+
past_key_value=self_attn_past_key_value,
|
247 |
+
)
|
248 |
+
attention_output = self_attention_outputs[0]
|
249 |
+
|
250 |
+
# if decoder, the last output is tuple of self-attn cache
|
251 |
+
if self.is_decoder:
|
252 |
+
outputs = self_attention_outputs[1:-1]
|
253 |
+
present_key_value = self_attention_outputs[-1]
|
254 |
+
else:
|
255 |
+
outputs = self_attention_outputs[
|
256 |
+
1:
|
257 |
+
] # add self attentions if we output attention weights
|
258 |
+
|
259 |
+
cross_attn_present_key_value = None
|
260 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
261 |
+
assert hasattr(
|
262 |
+
self, "crossattention"
|
263 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
264 |
+
|
265 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
266 |
+
cross_attn_past_key_value = (
|
267 |
+
past_key_value[-2:] if past_key_value is not None else None
|
268 |
+
)
|
269 |
+
cross_attention_outputs = self.crossattention(
|
270 |
+
attention_output,
|
271 |
+
attention_mask,
|
272 |
+
head_mask,
|
273 |
+
encoder_hidden_states,
|
274 |
+
encoder_attention_mask,
|
275 |
+
cross_attn_past_key_value,
|
276 |
+
output_attentions,
|
277 |
+
)
|
278 |
+
attention_output = cross_attention_outputs[0]
|
279 |
+
outputs = (
|
280 |
+
outputs + cross_attention_outputs[1:-1]
|
281 |
+
) # add cross attentions if we output attention weights
|
282 |
+
|
283 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
284 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
285 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
286 |
+
|
287 |
+
layer_output = apply_chunking_to_forward(
|
288 |
+
self.feed_forward_chunk,
|
289 |
+
self.chunk_size_feed_forward,
|
290 |
+
self.seq_len_dim,
|
291 |
+
attention_output,
|
292 |
+
)
|
293 |
+
outputs = (layer_output,) + outputs
|
294 |
+
|
295 |
+
# if decoder, return the attn key/values as the last output
|
296 |
+
if self.is_decoder:
|
297 |
+
outputs = outputs + (present_key_value,)
|
298 |
+
|
299 |
+
return outputs
|
300 |
+
|
301 |
+
def feed_forward_chunk(self, attention_output):
|
302 |
+
intermediate_output = self.intermediate(attention_output)
|
303 |
+
layer_output = self.output(intermediate_output, attention_output)
|
304 |
+
return layer_output
|
305 |
+
|
306 |
+
|
307 |
+
class BertEncoder(nn.Module):
|
308 |
+
def __init__(self, config):
|
309 |
+
super().__init__()
|
310 |
+
self.config = config
|
311 |
+
self.layer = nn.ModuleList(
|
312 |
+
[BertLayer(config) for _ in range(config.num_hidden_layers)]
|
313 |
+
)
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
hidden_states,
|
318 |
+
attention_mask=None,
|
319 |
+
head_mask=None,
|
320 |
+
encoder_hidden_states=None,
|
321 |
+
encoder_attention_mask=None,
|
322 |
+
past_key_values=None,
|
323 |
+
use_cache=None,
|
324 |
+
output_attentions=False,
|
325 |
+
output_hidden_states=False,
|
326 |
+
return_dict=True,
|
327 |
+
):
|
328 |
+
all_hidden_states = () if output_hidden_states else None
|
329 |
+
all_self_attentions = () if output_attentions else None
|
330 |
+
all_cross_attentions = (
|
331 |
+
() if output_attentions and self.config.add_cross_attention else None
|
332 |
+
)
|
333 |
+
|
334 |
+
next_decoder_cache = () if use_cache else None
|
335 |
+
for i, layer_module in enumerate(self.layer):
|
336 |
+
if output_hidden_states:
|
337 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
338 |
+
|
339 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
340 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
341 |
+
|
342 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
343 |
+
if use_cache:
|
344 |
+
use_cache = False
|
345 |
+
|
346 |
+
def create_custom_forward(module):
|
347 |
+
def custom_forward(*inputs):
|
348 |
+
return module(*inputs, past_key_value, output_attentions)
|
349 |
+
|
350 |
+
return custom_forward
|
351 |
+
|
352 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
353 |
+
create_custom_forward(layer_module),
|
354 |
+
hidden_states,
|
355 |
+
attention_mask,
|
356 |
+
layer_head_mask,
|
357 |
+
encoder_hidden_states,
|
358 |
+
encoder_attention_mask,
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
layer_outputs = layer_module(
|
362 |
+
hidden_states,
|
363 |
+
attention_mask,
|
364 |
+
layer_head_mask,
|
365 |
+
encoder_hidden_states,
|
366 |
+
encoder_attention_mask,
|
367 |
+
past_key_value,
|
368 |
+
output_attentions,
|
369 |
+
)
|
370 |
+
|
371 |
+
hidden_states = layer_outputs[0]
|
372 |
+
if use_cache:
|
373 |
+
next_decoder_cache += (layer_outputs[-1],)
|
374 |
+
if output_attentions:
|
375 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
376 |
+
if self.config.add_cross_attention:
|
377 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
378 |
+
|
379 |
+
if output_hidden_states:
|
380 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
381 |
+
|
382 |
+
if not return_dict:
|
383 |
+
return tuple(
|
384 |
+
v
|
385 |
+
for v in [
|
386 |
+
hidden_states,
|
387 |
+
next_decoder_cache,
|
388 |
+
all_hidden_states,
|
389 |
+
all_self_attentions,
|
390 |
+
all_cross_attentions,
|
391 |
+
]
|
392 |
+
if v is not None
|
393 |
+
)
|
394 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
395 |
+
last_hidden_state=hidden_states,
|
396 |
+
past_key_values=next_decoder_cache,
|
397 |
+
hidden_states=all_hidden_states,
|
398 |
+
attentions=all_self_attentions,
|
399 |
+
cross_attentions=all_cross_attentions,
|
400 |
+
)
|
401 |
+
|
402 |
+
|
403 |
+
class BertOutput(nn.Module):
|
404 |
+
def __init__(self, config):
|
405 |
+
super().__init__()
|
406 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
407 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
408 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
409 |
+
|
410 |
+
def forward(self, hidden_states, input_tensor):
|
411 |
+
hidden_states = self.dense(hidden_states)
|
412 |
+
hidden_states = self.dropout(hidden_states)
|
413 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
414 |
+
return hidden_states
|
415 |
+
|
416 |
+
|
417 |
+
# shamelessly stolen from: https://github.com/lucidrains/x-transformers/blob/fb1671342d3b27a748336873c225fbd4dd66b7a1/x_transformers/x_transformers.py#L267
|
418 |
+
class AlibiPositionalBias(nn.Module):
|
419 |
+
def __init__(self, heads, **kwargs):
|
420 |
+
super().__init__()
|
421 |
+
self.heads = heads
|
422 |
+
slopes = torch.Tensor(self._get_slopes(heads))
|
423 |
+
slopes = rearrange(slopes, "h -> h 1 1")
|
424 |
+
self.register_buffer("slopes", slopes, persistent=False)
|
425 |
+
self.register_buffer("bias", None, persistent=False)
|
426 |
+
|
427 |
+
def get_bias(self, i, j, device):
|
428 |
+
i_arange = torch.arange(j - i, j, device=device)
|
429 |
+
j_arange = torch.arange(j, device=device)
|
430 |
+
bias = -torch.abs(
|
431 |
+
rearrange(j_arange, "j -> 1 1 j") - rearrange(i_arange, "i -> 1 i 1")
|
432 |
+
)
|
433 |
+
return bias
|
434 |
+
|
435 |
+
@staticmethod
|
436 |
+
def _get_slopes(heads):
|
437 |
+
def get_slopes_power_of_2(n):
|
438 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
439 |
+
ratio = start
|
440 |
+
return [start * ratio**i for i in range(n)]
|
441 |
+
|
442 |
+
if math.log2(heads).is_integer():
|
443 |
+
return get_slopes_power_of_2(heads)
|
444 |
+
|
445 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
|
446 |
+
return (
|
447 |
+
get_slopes_power_of_2(closest_power_of_2)
|
448 |
+
+ get_slopes_power_of_2(2 * closest_power_of_2)[0::2][
|
449 |
+
: heads - closest_power_of_2
|
450 |
+
]
|
451 |
+
)
|
452 |
+
|
453 |
+
def forward(self, qk_dots):
|
454 |
+
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
|
455 |
+
|
456 |
+
if self.bias is not None and self.bias.shape[-1] >= j:
|
457 |
+
return qk_dots + self.bias[..., :i, :j]
|
458 |
+
|
459 |
+
bias = self.get_bias(i, j, device)
|
460 |
+
bias = bias * self.slopes
|
461 |
+
|
462 |
+
num_heads_unalibied = h - bias.shape[0]
|
463 |
+
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied))
|
464 |
+
self.register_buffer("bias", bias, persistent=False)
|
465 |
+
|
466 |
+
return qk_dots + self.bias
|
467 |
+
|
468 |
+
|
469 |
+
class BertModel(BertPreTrainedModel):
|
470 |
+
def __init__(self, config):
|
471 |
+
super().__init__(config)
|
472 |
+
self.embeddings = BertEmbeddings(config)
|
473 |
+
|
474 |
+
if config.embedding_size != config.hidden_size:
|
475 |
+
self.embeddings_project = nn.Linear(
|
476 |
+
config.embedding_size, config.hidden_size
|
477 |
+
)
|
478 |
+
|
479 |
+
self.encoder = BertEncoder(config)
|
480 |
+
self.config = config
|
481 |
+
self.init_weights()
|
482 |
+
|
483 |
+
def get_input_embeddings(self):
|
484 |
+
return self.embeddings.word_embeddings
|
485 |
+
|
486 |
+
def set_input_embeddings(self, value):
|
487 |
+
self.embeddings.word_embeddings = value
|
488 |
+
|
489 |
+
def _prune_heads(self, heads_to_prune):
|
490 |
+
"""
|
491 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
492 |
+
class PreTrainedModel
|
493 |
+
"""
|
494 |
+
for layer, heads in heads_to_prune.items():
|
495 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
496 |
+
|
497 |
+
def forward(
|
498 |
+
self,
|
499 |
+
input_ids=None,
|
500 |
+
attention_mask=None,
|
501 |
+
token_type_ids=None,
|
502 |
+
position_ids=None,
|
503 |
+
head_mask=None,
|
504 |
+
inputs_embeds=None,
|
505 |
+
output_attentions=None,
|
506 |
+
output_hidden_states=None,
|
507 |
+
return_dict=None,
|
508 |
+
):
|
509 |
+
output_attentions = (
|
510 |
+
output_attentions
|
511 |
+
if output_attentions is not None
|
512 |
+
else self.config.output_attentions
|
513 |
+
)
|
514 |
+
output_hidden_states = (
|
515 |
+
output_hidden_states
|
516 |
+
if output_hidden_states is not None
|
517 |
+
else self.config.output_hidden_states
|
518 |
+
)
|
519 |
+
return_dict = (
|
520 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
521 |
+
)
|
522 |
+
|
523 |
+
if input_ids is not None and inputs_embeds is not None:
|
524 |
+
raise ValueError(
|
525 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
526 |
+
)
|
527 |
+
elif input_ids is not None:
|
528 |
+
input_shape = input_ids.size()
|
529 |
+
batch_size, seq_length = input_shape
|
530 |
+
elif inputs_embeds is not None:
|
531 |
+
input_shape = inputs_embeds.size()[:-1]
|
532 |
+
else:
|
533 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
534 |
+
|
535 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
536 |
+
|
537 |
+
if attention_mask is None:
|
538 |
+
attention_mask = torch.ones(input_shape, device=device)
|
539 |
+
if token_type_ids is None:
|
540 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
541 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
542 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
543 |
+
batch_size, seq_length
|
544 |
+
)
|
545 |
+
token_type_ids = buffered_token_type_ids_expanded
|
546 |
+
else:
|
547 |
+
token_type_ids = torch.zeros(
|
548 |
+
input_shape, dtype=torch.long, device=device
|
549 |
+
)
|
550 |
+
|
551 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
552 |
+
attention_mask, input_shape, device
|
553 |
+
)
|
554 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
555 |
+
|
556 |
+
hidden_states = self.embeddings(
|
557 |
+
input_ids=input_ids,
|
558 |
+
position_ids=position_ids,
|
559 |
+
token_type_ids=token_type_ids,
|
560 |
+
inputs_embeds=inputs_embeds,
|
561 |
+
)
|
562 |
+
|
563 |
+
if hasattr(self, "embeddings_project"):
|
564 |
+
hidden_states = self.embeddings_project(hidden_states)
|
565 |
+
|
566 |
+
hidden_states = self.encoder(
|
567 |
+
hidden_states,
|
568 |
+
attention_mask=extended_attention_mask,
|
569 |
+
head_mask=head_mask,
|
570 |
+
output_attentions=output_attentions,
|
571 |
+
output_hidden_states=output_hidden_states,
|
572 |
+
return_dict=return_dict,
|
573 |
+
)
|
574 |
+
|
575 |
+
return hidden_states
|
576 |
+
|
577 |
+
|
578 |
+
class BertSelfOutput(nn.Module):
|
579 |
+
def __init__(self, config):
|
580 |
+
super().__init__()
|
581 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
582 |
+
if config.prenorm:
|
583 |
+
self.norm = nn.Identity()
|
584 |
+
else:
|
585 |
+
if config.attn_norm_layer_type == "layer_norm":
|
586 |
+
self.norm = nn.LayerNorm(config.hidden_size)
|
587 |
+
elif config.attn_norm_layer_type == "group_norm":
|
588 |
+
self.norm = nn.GroupNorm(
|
589 |
+
num_groups=config.attn_num_groups, num_channels=config.hidden_size
|
590 |
+
)
|
591 |
+
else:
|
592 |
+
raise ValueError(
|
593 |
+
f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}"
|
594 |
+
)
|
595 |
+
|
596 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
597 |
+
|
598 |
+
def forward(self, hidden_states, input_tensor):
|
599 |
+
hidden_states = self.dense(hidden_states)
|
600 |
+
hidden_states = self.dropout(hidden_states)
|
601 |
+
if isinstance(self.norm, nn.GroupNorm):
|
602 |
+
reshaped = hidden_states + input_tensor
|
603 |
+
# group norm only works over channel dim
|
604 |
+
reshaped = reshaped.permute(0, 2, 1)
|
605 |
+
hidden_states = self.norm(reshaped)
|
606 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
607 |
+
else:
|
608 |
+
hidden_states = self.norm(hidden_states + input_tensor)
|
609 |
+
return hidden_states
|
610 |
+
|
611 |
+
|
612 |
+
class BertSelfAttention(nn.Module):
|
613 |
+
def __init__(self, config):
|
614 |
+
super().__init__()
|
615 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
616 |
+
config, "embedding_size"
|
617 |
+
):
|
618 |
+
raise ValueError(
|
619 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
620 |
+
f"heads ({config.num_attention_heads})"
|
621 |
+
)
|
622 |
+
|
623 |
+
self.num_attention_heads = config.num_attention_heads
|
624 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
625 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
626 |
+
|
627 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
628 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
629 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
630 |
+
|
631 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
632 |
+
self.position_embedding_type = getattr(
|
633 |
+
config, "position_embedding_type", "absolute"
|
634 |
+
)
|
635 |
+
if (
|
636 |
+
self.position_embedding_type == "relative_key"
|
637 |
+
or self.position_embedding_type == "relative_key_query"
|
638 |
+
):
|
639 |
+
self.max_position_embeddings = config.max_position_embeddings
|
640 |
+
self.distance_embedding = nn.Embedding(
|
641 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
642 |
+
)
|
643 |
+
elif self.position_embedding_type == "rotary":
|
644 |
+
self.rotary = RotaryEmbedding(dim=self.attention_head_size)
|
645 |
+
elif self.position_embedding_type == "alibi":
|
646 |
+
self.alibi = AlibiPositionalBias(self.num_attention_heads)
|
647 |
+
|
648 |
+
self.is_decoder = config.is_decoder
|
649 |
+
|
650 |
+
if config.mup:
|
651 |
+
self.attention_scaling_factor = self.attention_head_size
|
652 |
+
else:
|
653 |
+
self.attention_scaling_factor = math.sqrt(self.attention_head_size)
|
654 |
+
|
655 |
+
def transpose_for_scores(self, x):
|
656 |
+
new_x_shape = x.size()[:-1] + (
|
657 |
+
self.num_attention_heads,
|
658 |
+
self.attention_head_size,
|
659 |
+
)
|
660 |
+
x = x.view(*new_x_shape)
|
661 |
+
return x.permute(0, 2, 1, 3)
|
662 |
+
|
663 |
+
def forward(
|
664 |
+
self,
|
665 |
+
hidden_states,
|
666 |
+
attention_mask=None,
|
667 |
+
head_mask=None,
|
668 |
+
encoder_hidden_states=None,
|
669 |
+
encoder_attention_mask=None,
|
670 |
+
past_key_value=None,
|
671 |
+
output_attentions=False,
|
672 |
+
):
|
673 |
+
mixed_query_layer = self.query(hidden_states)
|
674 |
+
|
675 |
+
# If this is instantiated as a cross-attention module, the keys
|
676 |
+
# and values come from an encoder; the attention mask needs to be
|
677 |
+
# such that the encoder's padding tokens are not attended to.
|
678 |
+
is_cross_attention = encoder_hidden_states is not None
|
679 |
+
|
680 |
+
if is_cross_attention and past_key_value is not None:
|
681 |
+
# reuse k,v, cross_attentions
|
682 |
+
key_layer = past_key_value[0]
|
683 |
+
value_layer = past_key_value[1]
|
684 |
+
attention_mask = encoder_attention_mask
|
685 |
+
elif is_cross_attention:
|
686 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
687 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
688 |
+
attention_mask = encoder_attention_mask
|
689 |
+
elif past_key_value is not None:
|
690 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
691 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
692 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
693 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
694 |
+
else:
|
695 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
696 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
697 |
+
|
698 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
699 |
+
|
700 |
+
if self.is_decoder:
|
701 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
702 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
703 |
+
# key/value_states (first "if" case)
|
704 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
705 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
706 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
707 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
708 |
+
past_key_value = (key_layer, value_layer)
|
709 |
+
|
710 |
+
if self.position_embedding_type == "rotary":
|
711 |
+
query_layer = self.rotary.rotate_queries_or_keys(query_layer)
|
712 |
+
key_layer = self.rotary.rotate_queries_or_keys(key_layer)
|
713 |
+
|
714 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
715 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
716 |
+
|
717 |
+
if (
|
718 |
+
self.position_embedding_type == "relative_key"
|
719 |
+
or self.position_embedding_type == "relative_key_query"
|
720 |
+
):
|
721 |
+
seq_length = hidden_states.size()[1]
|
722 |
+
position_ids_l = torch.arange(
|
723 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
724 |
+
).view(-1, 1)
|
725 |
+
position_ids_r = torch.arange(
|
726 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
727 |
+
).view(1, -1)
|
728 |
+
distance = position_ids_l - position_ids_r
|
729 |
+
positional_embedding = self.distance_embedding(
|
730 |
+
distance + self.max_position_embeddings - 1
|
731 |
+
)
|
732 |
+
positional_embedding = positional_embedding.to(
|
733 |
+
dtype=query_layer.dtype
|
734 |
+
) # fp16 compatibility
|
735 |
+
|
736 |
+
if self.position_embedding_type == "relative_key":
|
737 |
+
relative_position_scores = torch.einsum(
|
738 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
739 |
+
)
|
740 |
+
attention_scores = attention_scores + relative_position_scores
|
741 |
+
elif self.position_embedding_type == "relative_key_query":
|
742 |
+
relative_position_scores_query = torch.einsum(
|
743 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
744 |
+
)
|
745 |
+
relative_position_scores_key = torch.einsum(
|
746 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
747 |
+
)
|
748 |
+
attention_scores = (
|
749 |
+
attention_scores
|
750 |
+
+ relative_position_scores_query
|
751 |
+
+ relative_position_scores_key
|
752 |
+
)
|
753 |
+
|
754 |
+
# attention scaling -> for mup need to rescale to 1/d
|
755 |
+
attention_scores = attention_scores / self.attention_scaling_factor
|
756 |
+
|
757 |
+
if self.position_embedding_type == "alibi":
|
758 |
+
attention_scores = self.alibi(attention_scores)
|
759 |
+
|
760 |
+
if attention_mask is not None:
|
761 |
+
# Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
|
762 |
+
attention_scores = attention_scores + attention_mask
|
763 |
+
|
764 |
+
# Normalize the attention scores to probabilities.
|
765 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
766 |
+
|
767 |
+
# This is actually dropping out entire tokens to attend to, which might
|
768 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
769 |
+
attention_probs = self.dropout(attention_probs)
|
770 |
+
|
771 |
+
# Mask heads if we want to
|
772 |
+
if head_mask is not None:
|
773 |
+
attention_probs = attention_probs * head_mask
|
774 |
+
|
775 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
776 |
+
|
777 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
778 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
779 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
780 |
+
|
781 |
+
outputs = (
|
782 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
783 |
+
)
|
784 |
+
|
785 |
+
if self.is_decoder:
|
786 |
+
outputs = outputs + (past_key_value,)
|
787 |
+
return outputs
|
788 |
+
|
789 |
+
|
790 |
+
class BertAttention(nn.Module):
|
791 |
+
def __init__(self, config):
|
792 |
+
super().__init__()
|
793 |
+
self.self = BertSelfAttention(config)
|
794 |
+
self.output = BertSelfOutput(config)
|
795 |
+
if config.prenorm:
|
796 |
+
if config.attn_norm_layer_type == "layer_norm":
|
797 |
+
self.prenorm = nn.LayerNorm(
|
798 |
+
config.hidden_size, eps=config.layer_norm_eps
|
799 |
+
)
|
800 |
+
elif config.attn_norm_layer_type == "group_norm":
|
801 |
+
self.prenorm = nn.GroupNorm(
|
802 |
+
num_groups=config.attn_num_groups,
|
803 |
+
num_channels=config.hidden_size,
|
804 |
+
eps=config.layer_norm_eps,
|
805 |
+
)
|
806 |
+
else:
|
807 |
+
raise ValueError(
|
808 |
+
f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}"
|
809 |
+
)
|
810 |
+
else:
|
811 |
+
self.prenorm = nn.Identity()
|
812 |
+
|
813 |
+
self.pruned_heads = set()
|
814 |
+
|
815 |
+
def prune_heads(self, heads):
|
816 |
+
if len(heads) == 0:
|
817 |
+
return
|
818 |
+
heads, index = find_pruneable_heads_and_indices(
|
819 |
+
heads,
|
820 |
+
self.self.num_attention_heads,
|
821 |
+
self.self.attention_head_size,
|
822 |
+
self.pruned_heads,
|
823 |
+
)
|
824 |
+
|
825 |
+
# Prune linear layers
|
826 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
827 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
828 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
829 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
830 |
+
|
831 |
+
# Update hyper params and store pruned heads
|
832 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
833 |
+
self.self.all_head_size = (
|
834 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
835 |
+
)
|
836 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
837 |
+
|
838 |
+
def forward(
|
839 |
+
self,
|
840 |
+
hidden_states,
|
841 |
+
attention_mask=None,
|
842 |
+
head_mask=None,
|
843 |
+
encoder_hidden_states=None,
|
844 |
+
encoder_attention_mask=None,
|
845 |
+
past_key_value=None,
|
846 |
+
output_attentions=False,
|
847 |
+
):
|
848 |
+
# if we are doing prenorm instead of postnorm
|
849 |
+
if isinstance(self.prenorm, nn.GroupNorm):
|
850 |
+
# group norm only works over channel dim
|
851 |
+
reshaped = hidden_states.permute(0, 2, 1)
|
852 |
+
hidden_states = self.prenorm(reshaped)
|
853 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
854 |
+
else:
|
855 |
+
hidden_states = self.prenorm(hidden_states)
|
856 |
+
|
857 |
+
self_outputs = self.self(
|
858 |
+
hidden_states,
|
859 |
+
attention_mask,
|
860 |
+
head_mask,
|
861 |
+
encoder_hidden_states,
|
862 |
+
encoder_attention_mask,
|
863 |
+
past_key_value,
|
864 |
+
output_attentions,
|
865 |
+
)
|
866 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
867 |
+
outputs = (attention_output,) + self_outputs[
|
868 |
+
1:
|
869 |
+
] # add attentions if we output them
|
870 |
+
return outputs
|
871 |
+
|
872 |
+
|
873 |
+
class BertPredictionHeadTransform(nn.Module):
|
874 |
+
def __init__(self, config):
|
875 |
+
super().__init__()
|
876 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
877 |
+
if isinstance(config.hidden_act, str):
|
878 |
+
self.transform_act_fn = get_activation(config.hidden_act)
|
879 |
+
else:
|
880 |
+
self.transform_act_fn = config.hidden_act
|
881 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
882 |
+
|
883 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
884 |
+
hidden_states = self.dense(hidden_states)
|
885 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
886 |
+
hidden_states = self.LayerNorm(hidden_states)
|
887 |
+
return hidden_states
|
888 |
+
|
889 |
+
|
890 |
+
class BertLMPredictionHead(nn.Module):
|
891 |
+
def __init__(self, config):
|
892 |
+
super().__init__()
|
893 |
+
self.transform = BertPredictionHeadTransform(config)
|
894 |
+
|
895 |
+
# The output weights are the same as the input embeddings, but there is
|
896 |
+
# an output-only bias for each token.
|
897 |
+
if config.mup:
|
898 |
+
self.decoder = MuReadout(
|
899 |
+
config.hidden_size,
|
900 |
+
config.vocab_size,
|
901 |
+
output_mult=config.output_mult,
|
902 |
+
readout_zero_init=config.readout_zero_init,
|
903 |
+
bias=False,
|
904 |
+
)
|
905 |
+
else:
|
906 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
907 |
+
|
908 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
909 |
+
|
910 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
911 |
+
self.decoder.bias = self.bias
|
912 |
+
|
913 |
+
def forward(self, hidden_states):
|
914 |
+
hidden_states = self.transform(hidden_states)
|
915 |
+
hidden_states = self.decoder(hidden_states)
|
916 |
+
return hidden_states
|
917 |
+
|
918 |
+
|
919 |
+
class BertOnlyMLMHead(nn.Module):
|
920 |
+
def __init__(self, config):
|
921 |
+
super().__init__()
|
922 |
+
self.predictions = BertLMPredictionHead(config)
|
923 |
+
|
924 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
925 |
+
prediction_scores = self.predictions(sequence_output)
|
926 |
+
return prediction_scores
|
927 |
+
|
928 |
+
|
929 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
930 |
+
def __init__(self, config):
|
931 |
+
super().__init__(config)
|
932 |
+
|
933 |
+
self.bert = BertModel(config)
|
934 |
+
self.cls = BertOnlyMLMHead(config)
|
935 |
+
|
936 |
+
self.init_weights()
|
937 |
+
|
938 |
+
def get_output_embeddings(self):
|
939 |
+
return self.cls.predictions.decoder
|
940 |
+
|
941 |
+
def set_output_embeddings(self, new_embeddings):
|
942 |
+
self.cls.predictions.decoder = new_embeddings
|
943 |
+
|
944 |
+
def forward(
|
945 |
+
self,
|
946 |
+
input_ids=None,
|
947 |
+
attention_mask=None,
|
948 |
+
token_type_ids=None,
|
949 |
+
position_ids=None,
|
950 |
+
head_mask=None,
|
951 |
+
inputs_embeds=None,
|
952 |
+
labels=None,
|
953 |
+
output_attentions=None,
|
954 |
+
output_hidden_states=None,
|
955 |
+
return_dict=None,
|
956 |
+
):
|
957 |
+
r"""
|
958 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
959 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
960 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
961 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
962 |
+
"""
|
963 |
+
return_dict = (
|
964 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
965 |
+
)
|
966 |
+
|
967 |
+
outputs = self.bert(
|
968 |
+
input_ids,
|
969 |
+
attention_mask,
|
970 |
+
token_type_ids,
|
971 |
+
position_ids,
|
972 |
+
head_mask,
|
973 |
+
inputs_embeds,
|
974 |
+
output_attentions,
|
975 |
+
output_hidden_states,
|
976 |
+
return_dict,
|
977 |
+
)
|
978 |
+
|
979 |
+
sequence_output = outputs[0]
|
980 |
+
prediction_scores = self.cls(sequence_output)
|
981 |
+
|
982 |
+
loss = None
|
983 |
+
# Masked language modeling softmax layer
|
984 |
+
if labels is not None:
|
985 |
+
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
|
986 |
+
loss = loss_fct(
|
987 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
988 |
+
)
|
989 |
+
|
990 |
+
if not return_dict:
|
991 |
+
output = (prediction_scores,) + outputs[2:]
|
992 |
+
return ((loss,) + output) if loss is not None else output
|
993 |
+
|
994 |
+
return MaskedLMOutput(
|
995 |
+
loss=loss,
|
996 |
+
logits=prediction_scores,
|
997 |
+
hidden_states=outputs.hidden_states,
|
998 |
+
attentions=outputs.attentions,
|
999 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b463d1df77bc9a3a3395099f491550d098f41f7850aaf6712f2d2df640c4f9a
|
3 |
+
size 1906060473
|