import os import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from huggingface_hub import hf_hub_download from mup import MuReadout, set_base_shapes from mup.init import normal_ from nt_transformer.models.nt_bert.configuring_nt_bert import BertConfig from rotary_embedding_torch import RotaryEmbedding from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, MaskedLMOutput, ) from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, get_activation, prune_linear_layer, ) class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] _keys_to_ignore_on_load_unexpected = [ r"bert\.embeddings_project\.weight", r"bert\.embeddings_project\.bias", ] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module, readout_zero_init=False, query_zero_init=False): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 ### muP: swap constant std normal init with normal_ from `mup.init`. ### Because `_init_weights` is called in `__init__`, before `infshape` is set, ### we need to manually call `self.apply(self._init_weights)` after calling ### `set_base_shape(model, base)` if isinstance(module, MuReadout) and readout_zero_init: module.weight.data.zero_() else: if hasattr(module.weight, "infshape"): normal_(module.weight, mean=0.0, std=self.config.initializer_range) else: module.weight.data.normal_( mean=0.0, std=self.config.initializer_range ) ### End muP if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ### muP if isinstance(module, BertSelfAttention): if query_zero_init: module.query.weight.data[:] = 0 @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): model = super().from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) # since we used MuP, need to reset values since they're not saved with the model if os.path.exists("base_shapes.bsh") is False: hf_hub_download( "zpn/human_bp_bert", "base_shapes.bsh" ) set_base_shapes(model, "base_shapes.bsh", rescale_params=False) return model class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.embedding_size ) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.embedding_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file if config.embedding_norm_layer_type == "layer_norm": self.norm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) elif config.embedding_norm_layer_type == "group_norm": self.norm = nn.GroupNorm( num_groups=config.embedding_num_groups, num_channels=config.embedding_size, ) else: raise ValueError( f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}" ) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) ) self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) self.register_buffer( "token_type_ids", torch.zeros( self.position_ids.size(), dtype=torch.long, device=self.position_ids.device, ), persistent=False, ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[ :, past_key_values_length : seq_length + past_key_values_length ] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand( input_shape[0], seq_length ) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=self.position_ids.device ) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if isinstance(self.norm, nn.GroupNorm): # group norm only works over channel dim reshaped = embeddings.permute(0, 2, 1) embeddings = self.norm(reshaped) embeddings = embeddings.permute(0, 2, 1) else: embeddings = self.norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert ( self.is_decoder ), f"{self} should be used as a decoder model if cross attention is added" self.crossattention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = ( past_key_value[:2] if past_key_value is not None else None ) self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[ 1: ] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = ( past_key_value[-2:] if past_key_value is not None else None ) cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = ( outputs + cross_attention_outputs[1:-1] ) # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [BertLayer(config) for _ in range(config.num_hidden_layers)] ) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = ( () if output_attentions and self.config.add_cross_attention else None ) next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # shamelessly stolen from: https://github.com/lucidrains/x-transformers/blob/fb1671342d3b27a748336873c225fbd4dd66b7a1/x_transformers/x_transformers.py#L267 class AlibiPositionalBias(nn.Module): def __init__(self, heads, **kwargs): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, "h -> h 1 1") self.register_buffer("slopes", slopes, persistent=False) self.register_buffer("bias", None, persistent=False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device=device) j_arange = torch.arange(j, device=device) bias = -torch.abs( rearrange(j_arange, "j -> 1 1 j") - rearrange(i_arange, "i -> 1 i 1") ) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return ( get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][ : heads - closest_power_of_2 ] ) def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device if self.bias is not None and self.bias.shape[-1] >= j: return qk_dots + self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) self.register_buffer("bias", bias, persistent=False) return qk_dots + self.bias class BertModel(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = BertEmbeddings(config) if config.embedding_size != config.hidden_size: self.embeddings_project = nn.Linear( config.embedding_size, config.hidden_size ) self.encoder = BertEncoder(config) self.config = config self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand( batch_size, seq_length ) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=device ) extended_attention_mask = self.get_extended_attention_mask( attention_mask, input_shape, device ) head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states) hidden_states = self.encoder( hidden_states, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return hidden_states class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if config.prenorm: self.norm = nn.Identity() else: if config.attn_norm_layer_type == "layer_norm": self.norm = nn.LayerNorm(config.hidden_size) elif config.attn_norm_layer_type == "group_norm": self.norm = nn.GroupNorm( num_groups=config.attn_num_groups, num_channels=config.hidden_size ) else: raise ValueError( f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}" ) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if isinstance(self.norm, nn.GroupNorm): reshaped = hidden_states + input_tensor # group norm only works over channel dim reshaped = reshaped.permute(0, 2, 1) hidden_states = self.norm(reshaped) hidden_states = hidden_states.permute(0, 2, 1) else: hidden_states = self.norm(hidden_states + input_tensor) return hidden_states class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr( config, "embedding_size" ): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) if ( self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query" ): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size ) elif self.position_embedding_type == "rotary": self.rotary = RotaryEmbedding(dim=self.attention_head_size) elif self.position_embedding_type == "alibi": self.alibi = AlibiPositionalBias(self.num_attention_heads) self.is_decoder = config.is_decoder if config.mup: self.attention_scaling_factor = self.attention_head_size else: self.attention_scaling_factor = math.sqrt(self.attention_head_size) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) if self.position_embedding_type == "rotary": query_layer = self.rotary.rotate_queries_or_keys(query_layer) key_layer = self.rotary.rotate_queries_or_keys(key_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if ( self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query" ): seq_length = hidden_states.size()[1] position_ids_l = torch.arange( seq_length, dtype=torch.long, device=hidden_states.device ).view(-1, 1) position_ids_r = torch.arange( seq_length, dtype=torch.long, device=hidden_states.device ).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding( distance + self.max_position_embeddings - 1 ) positional_embedding = positional_embedding.to( dtype=query_layer.dtype ) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum( "bhld,lrd->bhlr", query_layer, positional_embedding ) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum( "bhld,lrd->bhlr", query_layer, positional_embedding ) relative_position_scores_key = torch.einsum( "bhrd,lrd->bhlr", key_layer, positional_embedding ) attention_scores = ( attention_scores + relative_position_scores_query + relative_position_scores_key ) # attention scaling -> for mup need to rescale to 1/d attention_scores = attention_scores / self.attention_scaling_factor if self.position_embedding_type == "alibi": attention_scores = self.alibi(attention_scores) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = ( (context_layer, attention_probs) if output_attentions else (context_layer,) ) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) if config.prenorm: if config.attn_norm_layer_type == "layer_norm": self.prenorm = nn.LayerNorm( config.hidden_size, eps=config.layer_norm_eps ) elif config.attn_norm_layer_type == "group_norm": self.prenorm = nn.GroupNorm( num_groups=config.attn_num_groups, num_channels=config.hidden_size, eps=config.layer_norm_eps, ) else: raise ValueError( f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}" ) else: self.prenorm = nn.Identity() self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads, ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = ( self.self.attention_head_size * self.self.num_attention_heads ) self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # if we are doing prenorm instead of postnorm if isinstance(self.prenorm, nn.GroupNorm): # group norm only works over channel dim reshaped = hidden_states.permute(0, 2, 1) hidden_states = self.prenorm(reshaped) hidden_states = hidden_states.permute(0, 2, 1) else: hidden_states = self.prenorm(hidden_states) self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[ 1: ] # add attentions if we output them return outputs class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = get_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. if config.mup: self.decoder = MuReadout( config.hidden_size, config.vocab_size, output_mult=config.output_mult, readout_zero_init=config.readout_zero_init, bias=False, ) else: self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class BertForMaskedLM(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) loss = None # Masked language modeling softmax layer if labels is not None: loss_fct = nn.CrossEntropyLoss() # -100 index = padding token loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )