Upload 81 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/49epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/50epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/53epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/54epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/55epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/56epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/57epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/58epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/59epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/60epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/RESULTS.md +196 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/checkpoint.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/config.yaml +227 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/acc.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/backward_time.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/cer.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/clip.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/forward_time.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/gpu_max_cached_mem_GB.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/grad_norm.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/iter_time.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/loss.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/loss_att.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/loss_scale.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/optim0_lr0.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/optim_step_time.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/train_time.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/wer.png +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/latest.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/run.sh +1 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700307214.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1753232.0 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700310367.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2045481.0 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700412292.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1823743.0 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700536345.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2992215.0 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700307214.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1753232.1 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700310367.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2045481.1 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700412292.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1823743.1 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700536345.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2992215.1 +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.1.log +773 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.2.log +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.3.log +1057 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.log +0 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/valid.acc.ave.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/valid.acc.ave_10best.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/valid.acc.best.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/48epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/52epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/53epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/54epoch.pth +3 -0
- medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/55epoch.pth +3 -0
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/49epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13942d8df6c2326cc0f4f5df1745ba9a6ee792b54ca65b85c322e9ebdad81439
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/50epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a034944163cbf78cb911dd3e9e7e5561b8516429ce774c7669808a12a8f459b
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/53epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc4a2014dacb245d48ec2e038cb352ff0902f18bc0156ce2b94eb1d321f2a5ab
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/54epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c499c23cef8489938aeb927367d479b55b109e852fde28fa17a14af64a8a76
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/55epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2930d5d0bb9b0029c8906d01748174b5663905ab969ee2137f019f2a72a02c7c
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/56epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d295b116b9891ef8520e7987d0682f79636305c96362e7067cfa63096f9e2e2e
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/57epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec090b65d90f017b160f5718d059cbbec01424491ae31ddb62e16255f64cc80a
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/58epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07d4fb13b7ec8fcbc0e79b48c2f2e3ca03db84a62c6aecb96db6ec70d992daee
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/59epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63fced0fdc8817cd4f376fe8e33ffc3b07a8615ce2151f6b5bd6be0990bb75ff
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/60epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ab99d72231e8b471e6f66d902a88c36315286ecfc4bb77cf1efcd73bfe200db
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/RESULTS.md
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- Generated by scripts/utils/show_asr_result.sh -->
|
2 |
+
# RESULTS
|
3 |
+
## Environments
|
4 |
+
- date: `Tue Mar 5 09:47:19 CST 2024`
|
5 |
+
- python version: `3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0]`
|
6 |
+
- espnet version: `espnet 202308`
|
7 |
+
- pytorch version: `pytorch 1.12.1+cu116`
|
8 |
+
- Git hash: `884659f9ee95374811015381c976fa3b4f6e01db`
|
9 |
+
- Commit date: `Thu Nov 23 00:23:29 2023 +0800`
|
10 |
+
|
11 |
+
## exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new
|
12 |
+
### WER
|
13 |
+
|
14 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
15 |
+
|---|---|---|---|---|---|---|---|---|
|
16 |
+
|decode_sot_asr_model_30epoch/test_clean_kaldi_fmt|961|64007|80.7|15.1|4.2|6.7|26.0|98.9|
|
17 |
+
|decode_sot_asr_model_30epoch/test_other_kaldi_fmt|992|80370|75.0|19.6|5.4|7.8|32.9|99.6|
|
18 |
+
|decode_sot_asr_model_35epoch/test_clean_kaldi_fmt|961|64007|81.5|14.5|4.0|7.4|26.0|98.6|
|
19 |
+
|decode_sot_asr_model_35epoch/test_other_kaldi_fmt|992|80370|75.7|18.8|5.5|9.0|33.2|99.4|
|
20 |
+
|decode_sot_asr_model_40epoch/test_clean_kaldi_fmt|961|64007|80.4|14.2|5.4|4.8|24.4|97.7|
|
21 |
+
|decode_sot_asr_model_40epoch/test_other_kaldi_fmt|992|80370|74.8|18.1|7.1|5.7|30.9|99.5|
|
22 |
+
|decode_sot_asr_model_8epoch/test_clean_kaldi_fmt|961|64007|70.4|23.7|5.8|7.2|36.7|99.1|
|
23 |
+
|decode_sot_asr_model_8epoch/test_other_kaldi_fmt|992|80370|63.7|28.7|7.5|8.6|44.8|99.6|
|
24 |
+
|decode_sot_asr_model_valid.acc.best/dev|3000|126853|54.3|32.2|13.4|28.9|74.6|100.0|
|
25 |
+
|decode_sot_asr_model_valid.acc.best/dev_2spk|3315|226216|76.8|11.5|11.6|12.4|35.5|99.2|
|
26 |
+
|decode_sot_asr_model_valid.acc.best/dev_2spk_sys7_8khz_spk1|1606|135101|36.6|21.7|41.7|3.2|66.7|100.0|
|
27 |
+
|decode_sot_asr_model_valid.acc.best/dev_2spk_sys7_8khz_spk2|1606|135101|35.5|21.5|43.0|3.4|67.9|100.0|
|
28 |
+
|decode_sot_asr_model_valid.acc.best/dev_3spk|2059|209679|63.9|20.3|15.8|10.4|46.5|100.0|
|
29 |
+
|decode_sot_asr_model_valid.acc.best/dev_3spk_kaldi_fmt|1004|124462|67.6|17.1|15.2|7.2|39.6|100.0|
|
30 |
+
|decode_sot_asr_model_valid.acc.best/dev_4spk|1467|200029|52.0|27.4|20.7|11.8|59.9|100.0|
|
31 |
+
|decode_sot_asr_model_valid.acc.best/dev_4spk_kaldi_fmt|721|119166|55.5|22.9|21.6|11.3|55.8|100.0|
|
32 |
+
|decode_sot_asr_model_valid.acc.best/dev_oracle|544|10798|85.9|12.2|1.9|88.7|102.9|92.8|
|
33 |
+
|decode_sot_asr_model_valid.acc.best/eval_oracle|4479|96585|84.7|13.0|2.4|88.2|103.6|94.5|
|
34 |
+
|decode_sot_asr_model_valid.acc.best/sot_sdm1_dev|2382|35243|0.0|0.0|100.0|0.0|100.0|100.0|
|
35 |
+
|decode_sot_asr_model_valid.acc.best/test-clean_2spk|4570|301042|77.5|10.9|11.6|11.3|33.8|99.5|
|
36 |
+
|decode_sot_asr_model_valid.acc.best/test-clean_3spk|2072|212871|64.4|19.3|16.3|11.8|47.4|100.0|
|
37 |
+
|decode_sot_asr_model_valid.acc.best/test-clean_4spk|1326|185394|53.2|26.2|20.6|10.6|57.4|100.0|
|
38 |
+
|decode_sot_asr_model_valid.acc.best/test-other_2spk|4663|336490|75.9|13.3|10.8|11.6|35.6|99.9|
|
39 |
+
|decode_sot_asr_model_valid.acc.best/test-other_3spk|2453|266074|60.5|23.6|15.9|11.5|51.0|100.0|
|
40 |
+
|decode_sot_asr_model_valid.acc.best/test-other_4spk|1795|259138|49.2|30.2|20.6|11.1|61.9|100.0|
|
41 |
+
|decode_sot_asr_model_valid.acc.best/test|3000|114243|55.6|30.7|13.7|32.9|77.3|99.9|
|
42 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_2spk_kaldi_fmt|2180|178761|80.2|9.0|10.8|7.5|27.2|98.9|
|
43 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_2spk_sys7_8khz_spk1|2180|178761|33.1|21.4|45.4|3.0|69.9|100.0|
|
44 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_2spk_sys7_8khz_spk2|2180|178761|31.6|24.4|44.0|3.0|71.4|100.0|
|
45 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_3spk_kaldi_fmt|977|124741|66.8|17.5|15.7|9.0|42.2|100.0|
|
46 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_4spk_kaldi_fmt|632|109072|56.3|22.4|21.3|8.8|52.5|100.0|
|
47 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_kaldi_fmt|961|64007|81.4|13.3|5.3|5.9|24.5|97.5|
|
48 |
+
|decode_sot_asr_model_valid.acc.best/test_other_2spk_kaldi_fmt|2363|205496|78.6|11.7|9.6|7.8|29.1|99.8|
|
49 |
+
|decode_sot_asr_model_valid.acc.best/test_other_2spk_sys7_8khz_spk1|2363|205496|28.2|26.2|45.6|3.1|74.9|100.0|
|
50 |
+
|decode_sot_asr_model_valid.acc.best/test_other_2spk_sys7_8khz_spk2|2363|205496|35.6|22.3|42.1|3.1|67.5|100.0|
|
51 |
+
|decode_sot_asr_model_valid.acc.best/test_other_3spk_kaldi_fmt|1246|162996|62.5|21.9|15.6|9.1|46.6|100.0|
|
52 |
+
|decode_sot_asr_model_valid.acc.best/test_other_4spk_kaldi_fmt|901|157123|51.9|26.0|22.1|10.4|58.5|100.0|
|
53 |
+
|decode_sot_asr_model_valid.acc.best/test_other_kaldi_fmt|992|80370|75.5|17.6|6.9|6.8|31.3|99.3|
|
54 |
+
|decode_sot_css_asr_model_valid.acc.best/dev_oracle|544|10798|85.0|12.9|2.1|48.0|63.0|92.8|
|
55 |
+
|decode_sot_css_asr_model_valid.acc.best/eval_oracle|4479|96585|84.1|13.2|2.7|49.1|65.0|94.5|
|
56 |
+
|
57 |
+
### CER
|
58 |
+
|
59 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
60 |
+
|---|---|---|---|---|---|---|---|---|
|
61 |
+
|decode_sot_asr_model_30epoch/test_clean_kaldi_fmt|961|329390|89.3|6.0|4.6|6.7|17.4|98.9|
|
62 |
+
|decode_sot_asr_model_30epoch/test_other_kaldi_fmt|992|416899|85.6|8.2|6.3|7.7|22.2|99.6|
|
63 |
+
|decode_sot_asr_model_35epoch/test_clean_kaldi_fmt|961|329390|89.8|5.8|4.4|7.4|17.6|98.6|
|
64 |
+
|decode_sot_asr_model_35epoch/test_other_kaldi_fmt|992|416899|85.9|8.0|6.1|8.5|22.6|99.4|
|
65 |
+
|decode_sot_asr_model_40epoch/test_clean_kaldi_fmt|961|329390|88.6|5.9|5.5|4.5|16.0|97.7|
|
66 |
+
|decode_sot_asr_model_40epoch/test_other_kaldi_fmt|992|416899|84.5|8.0|7.5|5.2|20.7|99.5|
|
67 |
+
|decode_sot_asr_model_8epoch/test_clean_kaldi_fmt|961|329390|83.8|9.3|6.9|7.2|23.5|99.1|
|
68 |
+
|decode_sot_asr_model_8epoch/test_other_kaldi_fmt|992|416899|78.7|12.1|9.2|8.2|29.5|99.6|
|
69 |
+
|decode_sot_asr_model_valid.acc.best/dev|3000|673222|71.1|13.3|15.6|28.5|57.5|100.0|
|
70 |
+
|decode_sot_asr_model_valid.acc.best/dev_2spk|3315|1230801|83.7|6.2|10.1|10.8|27.2|99.2|
|
71 |
+
|decode_sot_asr_model_valid.acc.best/dev_2spk_sys7_8khz_spk1|1606|735694|47.9|9.1|43.0|3.6|55.7|100.0|
|
72 |
+
|decode_sot_asr_model_valid.acc.best/dev_2spk_sys7_8khz_spk2|1606|735694|47.1|9.1|43.8|3.7|56.5|100.0|
|
73 |
+
|decode_sot_asr_model_valid.acc.best/dev_3spk|2059|1140428|74.6|10.3|15.2|9.3|34.7|100.0|
|
74 |
+
|decode_sot_asr_model_valid.acc.best/dev_3spk_kaldi_fmt|1004|677017|76.8|8.2|15.0|6.2|29.4|100.0|
|
75 |
+
|decode_sot_asr_model_valid.acc.best/dev_4spk|1467|1087409|65.5|13.1|21.3|10.3|44.7|100.0|
|
76 |
+
|decode_sot_asr_model_valid.acc.best/dev_4spk_kaldi_fmt|721|647884|67.3|10.5|22.2|8.9|41.6|100.0|
|
77 |
+
|decode_sot_asr_model_valid.acc.best/dev_oracle|544|57590|94.8|3.2|2.0|86.2|91.5|92.8|
|
78 |
+
|decode_sot_asr_model_valid.acc.best/eval_oracle|4479|522239|93.8|3.6|2.6|85.2|91.4|94.5|
|
79 |
+
|decode_sot_asr_model_valid.acc.best/sot_sdm1_dev|2382|169857|0.0|0.0|100.0|0.0|100.0|100.0|
|
80 |
+
|decode_sot_asr_model_valid.acc.best/test-clean_2spk|4570|1550429|84.0|6.1|10.0|9.9|25.9|99.5|
|
81 |
+
|decode_sot_asr_model_valid.acc.best/test-clean_3spk|2072|1084475|74.6|10.4|15.1|10.2|35.7|100.0|
|
82 |
+
|decode_sot_asr_model_valid.acc.best/test-clean_4spk|1326|938467|66.3|13.1|20.7|9.9|43.6|100.0|
|
83 |
+
|decode_sot_asr_model_valid.acc.best/test-other_2spk|4663|1742136|83.5|7.0|9.4|10.0|26.5|99.9|
|
84 |
+
|decode_sot_asr_model_valid.acc.best/test-other_3spk|2453|1381987|72.6|12.0|15.4|10.0|37.4|100.0|
|
85 |
+
|decode_sot_asr_model_valid.acc.best/test-other_4spk|1795|1346646|63.9|14.4|21.7|9.9|46.0|100.0|
|
86 |
+
|decode_sot_asr_model_valid.acc.best/test|3000|608408|71.7|12.5|15.8|32.4|60.7|99.9|
|
87 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_2spk_kaldi_fmt|2180|921344|85.5|5.0|9.5|6.1|20.6|98.9|
|
88 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_2spk_sys7_8khz_spk1|2180|921344|44.6|8.9|46.5|3.5|58.8|100.0|
|
89 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_2spk_sys7_8khz_spk2|2180|921344|44.9|10.2|44.9|3.7|58.9|100.0|
|
90 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_3spk_kaldi_fmt|977|635802|76.0|9.0|15.0|7.7|31.7|100.0|
|
91 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_4spk_kaldi_fmt|632|552325|67.8|10.6|21.6|7.8|39.9|100.0|
|
92 |
+
|decode_sot_asr_model_valid.acc.best/test_clean_kaldi_fmt|961|329390|89.2|5.3|5.4|5.8|16.6|97.5|
|
93 |
+
|decode_sot_asr_model_valid.acc.best/test_other_2spk_kaldi_fmt|2363|1064868|85.3|6.1|8.6|6.4|21.1|99.8|
|
94 |
+
|decode_sot_asr_model_valid.acc.best/test_other_2spk_sys7_8khz_spk1|2363|1064868|42.2|11.1|46.7|3.8|61.6|100.0|
|
95 |
+
|decode_sot_asr_model_valid.acc.best/test_other_2spk_sys7_8khz_spk2|2363|1064868|47.8|9.2|43.0|3.7|55.9|100.0|
|
96 |
+
|decode_sot_asr_model_valid.acc.best/test_other_3spk_kaldi_fmt|1246|847159|73.8|10.5|15.6|7.9|34.1|100.0|
|
97 |
+
|decode_sot_asr_model_valid.acc.best/test_other_4spk_kaldi_fmt|901|817228|65.0|11.9|23.1|8.7|43.7|100.0|
|
98 |
+
|decode_sot_asr_model_valid.acc.best/test_other_kaldi_fmt|992|416899|85.1|7.3|7.6|6.8|21.7|99.3|
|
99 |
+
|decode_sot_css_asr_model_valid.acc.best/dev_oracle|544|57590|93.7|4.0|2.4|46.5|52.8|92.8|
|
100 |
+
|decode_sot_css_asr_model_valid.acc.best/eval_oracle|4479|522239|92.9|4.1|3.0|47.2|54.3|94.5|
|
101 |
+
|
102 |
+
### TER
|
103 |
+
|
104 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
105 |
+
|---|---|---|---|---|---|---|---|---|
|
106 |
+
## exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/decode_sot_asr_model_30epoch
|
107 |
+
### WER
|
108 |
+
|
109 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
110 |
+
|---|---|---|---|---|---|---|---|---|
|
111 |
+
|org/dev_kaldi_fmt|605|47659|78.4|16.5|5.1|5.5|27.1|97.2|
|
112 |
+
|
113 |
+
### CER
|
114 |
+
|
115 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
116 |
+
|---|---|---|---|---|---|---|---|---|
|
117 |
+
|org/dev_kaldi_fmt|605|258151|87.5|6.5|6.1|5.6|18.1|97.2|
|
118 |
+
|
119 |
+
### TER
|
120 |
+
|
121 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
122 |
+
|---|---|---|---|---|---|---|---|---|
|
123 |
+
## exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/decode_sot_asr_model_35epoch
|
124 |
+
### WER
|
125 |
+
|
126 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
127 |
+
|---|---|---|---|---|---|---|---|---|
|
128 |
+
|org/dev_kaldi_fmt|605|47659|79.4|16.2|4.4|6.8|27.4|98.5|
|
129 |
+
|
130 |
+
### CER
|
131 |
+
|
132 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
133 |
+
|---|---|---|---|---|---|---|---|---|
|
134 |
+
|org/dev_kaldi_fmt|605|258151|88.2|6.5|5.3|6.7|18.5|98.5|
|
135 |
+
|
136 |
+
### TER
|
137 |
+
|
138 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
139 |
+
|---|---|---|---|---|---|---|---|---|
|
140 |
+
## exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/decode_sot_asr_model_40epoch
|
141 |
+
### WER
|
142 |
+
|
143 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
144 |
+
|---|---|---|---|---|---|---|---|---|
|
145 |
+
|org/dev_kaldi_fmt|605|47659|78.5|15.6|5.8|4.0|25.5|97.5|
|
146 |
+
|
147 |
+
### CER
|
148 |
+
|
149 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
150 |
+
|---|---|---|---|---|---|---|---|---|
|
151 |
+
|org/dev_kaldi_fmt|605|258151|87.0|6.3|6.7|3.9|16.9|97.5|
|
152 |
+
|
153 |
+
### TER
|
154 |
+
|
155 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
156 |
+
|---|---|---|---|---|---|---|---|---|
|
157 |
+
## exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/decode_sot_asr_model_8epoch
|
158 |
+
### WER
|
159 |
+
|
160 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
161 |
+
|---|---|---|---|---|---|---|---|---|
|
162 |
+
|org/dev_kaldi_fmt|605|47659|68.4|24.9|6.7|6.7|38.2|98.3|
|
163 |
+
|
164 |
+
### CER
|
165 |
+
|
166 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
167 |
+
|---|---|---|---|---|---|---|---|---|
|
168 |
+
|org/dev_kaldi_fmt|605|258151|81.6|9.9|8.5|6.7|25.2|98.3|
|
169 |
+
|
170 |
+
### TER
|
171 |
+
|
172 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
173 |
+
|---|---|---|---|---|---|---|---|---|
|
174 |
+
## exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/decode_sot_asr_model_valid.acc.best
|
175 |
+
### WER
|
176 |
+
|
177 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
178 |
+
|---|---|---|---|---|---|---|---|---|
|
179 |
+
|org/dev_2spk_kaldi_fmt|1606|135101|79.1|9.8|11.1|8.4|29.2|98.4|
|
180 |
+
|org/dev_kaldi_fmt|605|47659|78.8|15.0|6.2|5.7|26.9|97.5|
|
181 |
+
|org/sot_sdm1_eval|2385|37529|33.4|53.9|12.7|102.0|168.6|100.0|
|
182 |
+
|org/tt_mix_clean_reverb_max_16k|3000|3000|0.0|100.0|0.0|4047.2|4147.2|100.0|
|
183 |
+
|
184 |
+
### CER
|
185 |
+
|
186 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
187 |
+
|---|---|---|---|---|---|---|---|---|
|
188 |
+
|org/dev_2spk_kaldi_fmt|1606|735694|84.8|5.3|9.9|6.9|22.1|98.4|
|
189 |
+
|org/dev_kaldi_fmt|605|258151|87.1|6.0|6.9|5.7|18.6|97.5|
|
190 |
+
|org/sot_sdm1_eval|2385|183036|62.5|22.7|14.8|97.8|135.2|100.0|
|
191 |
+
|org/tt_mix_clean_reverb_max_16k|3000|143026|17.3|82.6|0.1|411.1|493.8|100.0|
|
192 |
+
|
193 |
+
### TER
|
194 |
+
|
195 |
+
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|
196 |
+
|---|---|---|---|---|---|---|---|---|
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/checkpoint.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14eb244b2d0dfc6d2dc23b8b9a10e1814df51f163d680c62439ff31374e6bd2e
|
3 |
+
size 516820547
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/config.yaml
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config: conf/tuning/train_sot_asr_conformer_medium.yaml
|
2 |
+
print_config: false
|
3 |
+
log_level: INFO
|
4 |
+
drop_last_iter: false
|
5 |
+
dry_run: false
|
6 |
+
iterator_type: sequence
|
7 |
+
valid_iterator_type: null
|
8 |
+
output_dir: exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new
|
9 |
+
ngpu: 1
|
10 |
+
seed: 0
|
11 |
+
num_workers: 16
|
12 |
+
num_att_plot: 3
|
13 |
+
dist_backend: nccl
|
14 |
+
dist_init_method: env://
|
15 |
+
dist_world_size: 4
|
16 |
+
dist_rank: 0
|
17 |
+
local_rank: 0
|
18 |
+
dist_master_addr: localhost
|
19 |
+
dist_master_port: 44319
|
20 |
+
dist_launcher: null
|
21 |
+
multiprocessing_distributed: true
|
22 |
+
unused_parameters: false
|
23 |
+
sharded_ddp: false
|
24 |
+
cudnn_enabled: true
|
25 |
+
cudnn_benchmark: false
|
26 |
+
cudnn_deterministic: true
|
27 |
+
collect_stats: false
|
28 |
+
write_collected_feats: false
|
29 |
+
max_epoch: 60
|
30 |
+
patience: null
|
31 |
+
val_scheduler_criterion:
|
32 |
+
- valid
|
33 |
+
- loss
|
34 |
+
early_stopping_criterion:
|
35 |
+
- valid
|
36 |
+
- loss
|
37 |
+
- min
|
38 |
+
best_model_criterion:
|
39 |
+
- - valid
|
40 |
+
- acc
|
41 |
+
- max
|
42 |
+
keep_nbest_models: 10
|
43 |
+
nbest_averaging_interval: 0
|
44 |
+
grad_clip: 5.0
|
45 |
+
grad_clip_type: 2.0
|
46 |
+
grad_noise: false
|
47 |
+
accum_grad: 4
|
48 |
+
no_forward_run: false
|
49 |
+
resume: true
|
50 |
+
train_dtype: float32
|
51 |
+
use_amp: false
|
52 |
+
log_interval: null
|
53 |
+
use_matplotlib: true
|
54 |
+
use_tensorboard: true
|
55 |
+
create_graph_in_tensorboard: false
|
56 |
+
use_wandb: false
|
57 |
+
wandb_project: null
|
58 |
+
wandb_id: null
|
59 |
+
wandb_entity: null
|
60 |
+
wandb_name: null
|
61 |
+
wandb_model_log_interval: -1
|
62 |
+
detect_anomaly: false
|
63 |
+
pretrain_path: null
|
64 |
+
init_param:
|
65 |
+
- /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth
|
66 |
+
ignore_init_mismatch: false
|
67 |
+
freeze_param: []
|
68 |
+
num_iters_per_epoch: null
|
69 |
+
batch_size: 20
|
70 |
+
valid_batch_size: null
|
71 |
+
batch_bins: 16000000
|
72 |
+
valid_batch_bins: null
|
73 |
+
train_shape_file:
|
74 |
+
- exp/asr_stats_raw_en_char_sp/train/speech_shape
|
75 |
+
- exp/asr_stats_raw_en_char_sp/train/text_shape.char
|
76 |
+
valid_shape_file:
|
77 |
+
- exp/asr_stats_raw_en_char_sp/valid/speech_shape
|
78 |
+
- exp/asr_stats_raw_en_char_sp/valid/text_shape.char
|
79 |
+
batch_type: numel
|
80 |
+
valid_batch_type: null
|
81 |
+
fold_length:
|
82 |
+
- 80000
|
83 |
+
- 150
|
84 |
+
sort_in_batch: descending
|
85 |
+
shuffle_within_batch: false
|
86 |
+
sort_batch: descending
|
87 |
+
multiple_iterator: false
|
88 |
+
chunk_length: 500
|
89 |
+
chunk_shift_ratio: 0.5
|
90 |
+
num_cache_chunks: 1024
|
91 |
+
chunk_excluded_key_prefixes: []
|
92 |
+
train_data_path_and_name_and_type:
|
93 |
+
- - dump/raw/train_medium_kaldi_fmt_sp/wav.scp
|
94 |
+
- speech
|
95 |
+
- kaldi_ark
|
96 |
+
- - dump/raw/train_medium_kaldi_fmt_sp/text
|
97 |
+
- text
|
98 |
+
- text
|
99 |
+
valid_data_path_and_name_and_type:
|
100 |
+
- - dump/raw/dev_kaldi_fmt/wav.scp
|
101 |
+
- speech
|
102 |
+
- kaldi_ark
|
103 |
+
- - dump/raw/dev_kaldi_fmt/text
|
104 |
+
- text
|
105 |
+
- text
|
106 |
+
allow_variable_data_keys: false
|
107 |
+
max_cache_size: 0.0
|
108 |
+
max_cache_fd: 32
|
109 |
+
valid_max_cache_size: null
|
110 |
+
exclude_weight_decay: false
|
111 |
+
exclude_weight_decay_conf: {}
|
112 |
+
optim: adam
|
113 |
+
optim_conf:
|
114 |
+
lr: 0.002
|
115 |
+
weight_decay: 1.0e-06
|
116 |
+
scheduler: warmuplr
|
117 |
+
scheduler_conf:
|
118 |
+
warmup_steps: 20000
|
119 |
+
token_list:
|
120 |
+
- <blank>
|
121 |
+
- <unk>
|
122 |
+
- <sc>
|
123 |
+
- <space>
|
124 |
+
- E
|
125 |
+
- T
|
126 |
+
- A
|
127 |
+
- O
|
128 |
+
- N
|
129 |
+
- I
|
130 |
+
- H
|
131 |
+
- S
|
132 |
+
- R
|
133 |
+
- D
|
134 |
+
- L
|
135 |
+
- U
|
136 |
+
- M
|
137 |
+
- C
|
138 |
+
- W
|
139 |
+
- F
|
140 |
+
- G
|
141 |
+
- Y
|
142 |
+
- P
|
143 |
+
- B
|
144 |
+
- V
|
145 |
+
- K
|
146 |
+
- ''''
|
147 |
+
- X
|
148 |
+
- J
|
149 |
+
- Q
|
150 |
+
- Z
|
151 |
+
- <sos/eos>
|
152 |
+
init: null
|
153 |
+
input_size: null
|
154 |
+
ctc_conf:
|
155 |
+
dropout_rate: 0.0
|
156 |
+
ctc_type: builtin
|
157 |
+
reduce: true
|
158 |
+
ignore_nan_grad: null
|
159 |
+
zero_infinity: true
|
160 |
+
joint_net_conf: null
|
161 |
+
use_preprocessor: true
|
162 |
+
token_type: char
|
163 |
+
bpemodel: null
|
164 |
+
non_linguistic_symbols: null
|
165 |
+
cleaner: null
|
166 |
+
g2p: null
|
167 |
+
speech_volume_normalize: null
|
168 |
+
rir_scp: null
|
169 |
+
rir_apply_prob: 1.0
|
170 |
+
noise_scp: null
|
171 |
+
noise_apply_prob: 1.0
|
172 |
+
noise_db_range: '13_15'
|
173 |
+
short_noise_thres: 0.5
|
174 |
+
aux_ctc_tasks: []
|
175 |
+
frontend: default
|
176 |
+
frontend_conf:
|
177 |
+
fs: 16k
|
178 |
+
specaug: null
|
179 |
+
specaug_conf: {}
|
180 |
+
normalize: global_mvn
|
181 |
+
normalize_conf:
|
182 |
+
stats_file: exp/asr_stats_raw_en_char_sp/train/feats_stats.npz
|
183 |
+
model: espnet
|
184 |
+
model_conf:
|
185 |
+
ctc_weight: 0.0
|
186 |
+
lsm_weight: 0.1
|
187 |
+
length_normalized_loss: false
|
188 |
+
preencoder: null
|
189 |
+
preencoder_conf: {}
|
190 |
+
encoder: conformer
|
191 |
+
encoder_conf:
|
192 |
+
output_size: 256
|
193 |
+
attention_heads: 4
|
194 |
+
linear_units: 2048
|
195 |
+
num_blocks: 12
|
196 |
+
dropout_rate: 0.1
|
197 |
+
positional_dropout_rate: 0.1
|
198 |
+
attention_dropout_rate: 0.1
|
199 |
+
input_layer: conv2d
|
200 |
+
normalize_before: true
|
201 |
+
macaron_style: true
|
202 |
+
rel_pos_type: latest
|
203 |
+
pos_enc_layer_type: rel_pos
|
204 |
+
selfattention_layer_type: rel_selfattn
|
205 |
+
activation_type: swish
|
206 |
+
use_cnn_module: true
|
207 |
+
cnn_module_kernel: 31
|
208 |
+
postencoder: null
|
209 |
+
postencoder_conf: {}
|
210 |
+
decoder: transformer
|
211 |
+
decoder_conf:
|
212 |
+
attention_heads: 4
|
213 |
+
linear_units: 2048
|
214 |
+
num_blocks: 6
|
215 |
+
dropout_rate: 0.1
|
216 |
+
positional_dropout_rate: 0.1
|
217 |
+
self_attention_dropout_rate: 0.1
|
218 |
+
src_attention_dropout_rate: 0.1
|
219 |
+
preprocessor: multi
|
220 |
+
preprocessor_conf:
|
221 |
+
speaker_change_symbol:
|
222 |
+
- <sc>
|
223 |
+
required:
|
224 |
+
- output_dir
|
225 |
+
- token_list
|
226 |
+
version: '202308'
|
227 |
+
distributed: true
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/acc.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/backward_time.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/cer.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/clip.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/forward_time.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/gpu_max_cached_mem_GB.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/grad_norm.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/iter_time.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/loss.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/loss_att.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/loss_scale.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/optim0_lr0.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/optim_step_time.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/train_time.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/images/wer.png
ADDED
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ab99d72231e8b471e6f66d902a88c36315286ecfc4bb77cf1efcd73bfe200db
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/run.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
./asr.sh --lang en --audio_format flac.ark --stage 12 --feats_type raw --token_type char --sot_asr true --max_wav_duration 50 --speed_perturb_factors '0.9 1.0 1.1' --feats_normalize global_mvn --use_lm false --pretrained_model /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth --asr_config conf/tuning/train_sot_asr_conformer_medium.yaml --lm_config conf/tuning/train_lm_transformer.yaml --inference_config conf/tuning/decode_sot.yaml --train_set train_medium_kaldi_fmt --valid_set dev_kaldi_fmt --test_sets 'dev_kaldi_fmt test_clean_kaldi_fmt test_other_kaldi_fmt' --ngpu 4 --asr_tag train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new --lm_train_text data/local/other_text/text --bpe_train_text data/train_medium_kaldi_fmt/text --stage 12 "$@"; exit $?
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700307214.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1753232.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c30cf181e3c82c4cc12d7aebfb77b819aa2da1fd08a2d567519ad1b5196e3171
|
3 |
+
size 88
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700310367.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2045481.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0848df7dac3f565c375a3f38dc7a661fd41628f61bffb3d75e70e3641706faec
|
3 |
+
size 107387014
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700412292.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1823743.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c40b67a8b2a99f63326ec1b7b8685ca88cc3ed776a10e39c5273e164c8982b67
|
3 |
+
size 8306
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/train/events.out.tfevents.1700536345.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2992215.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08432dbcf98ebaad27388a1b90b781f1aef124b1ac2c3c4676f8a387c81c0c1a
|
3 |
+
size 743299213
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700307214.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1753232.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05d778de3f4cc8bdfe77155d9f1e2d6782358f94fdcf930fd16cb4b391e0f81f
|
3 |
+
size 88
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700310367.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2045481.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ead35607a81bfff4e5bab9f6dd496480516f7350927ad98a7a4db115507b2ee
|
3 |
+
size 2338
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700412292.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.1823743.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e422f849535779325246177b90cb5193453b58ac6cceb2e15640105036c361a8
|
3 |
+
size 88
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/tensorboard/valid/events.out.tfevents.1700536345.de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb.2992215.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:143371316cfd5edd14fe5c0cc235d84980859e4dd329af2b61fcdd64eb7b93fb
|
3 |
+
size 14752
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.1.log
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.asr_train --use_preprocessor true --bpemodel none --token_type char --token_list data/en_token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/wav.scp,speech,kaldi_ark --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/speech_shape --resume true --init_param /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth --ignore_init_mismatch false --fold_length 80000 --output_dir exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new --config conf/tuning/train_sot_asr_conformer_medium.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/asr_stats_raw_en_char_sp/train/feats_stats.npz --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/wav.scp,speech,kaldi_ark --train_shape_file exp/asr_stats_raw_en_char_sp/train/speech_shape --fold_length 150 --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/text,text,text --train_shape_file exp/asr_stats_raw_en_char_sp/train/text_shape.char --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/text,text,text --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/text_shape.char --ngpu 4 --multiprocessing_distributed True
|
2 |
+
# Started at Mon Nov 20 00:43:12 CST 2023
|
3 |
+
#
|
4 |
+
/star-home/jinzengrui/lib/miniconda3/envs/dev39/bin/python3 /star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py --use_preprocessor true --bpemodel none --token_type char --token_list data/en_token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/wav.scp,speech,kaldi_ark --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/speech_shape --resume true --init_param /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth --ignore_init_mismatch false --fold_length 80000 --output_dir exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new --config conf/tuning/train_sot_asr_conformer_medium.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/asr_stats_raw_en_char_sp/train/feats_stats.npz --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/wav.scp,speech,kaldi_ark --train_shape_file exp/asr_stats_raw_en_char_sp/train/speech_shape --fold_length 150 --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/text,text,text --train_shape_file exp/asr_stats_raw_en_char_sp/train/text_shape.char --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/text,text,text --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/text_shape.char --ngpu 4 --multiprocessing_distributed True
|
5 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:23,119 (distributed_c10d:228) INFO: Added key: store_based_barrier_key:1 to store for rank: 0
|
6 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:23,119 (distributed_c10d:262) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 4 nodes.
|
7 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:23,174 (asr:490) INFO: Vocabulary size: 32
|
8 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:31,610 (abs_task:1229) INFO: pytorch.version=1.11.0+cu102, cuda.available=True, cudnn.version=7605, cudnn.benchmark=False, cudnn.deterministic=True
|
9 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:31,624 (abs_task:1230) INFO: Model structure:
|
10 |
+
ESPnetASRModel(
|
11 |
+
(frontend): DefaultFrontend(
|
12 |
+
(stft): Stft(n_fft=512, win_length=512, hop_length=128, center=True, normalized=False, onesided=True)
|
13 |
+
(frontend): Frontend()
|
14 |
+
(logmel): LogMel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000.0, htk=False)
|
15 |
+
)
|
16 |
+
(normalize): GlobalMVN(stats_file=exp/asr_stats_raw_en_char_sp/train/feats_stats.npz, norm_means=True, norm_vars=True)
|
17 |
+
(encoder): ConformerEncoder(
|
18 |
+
(embed): Conv2dSubsampling(
|
19 |
+
(conv): Sequential(
|
20 |
+
(0): Conv2d(1, 256, kernel_size=(3, 3), stride=(2, 2))
|
21 |
+
(1): ReLU()
|
22 |
+
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2))
|
23 |
+
(3): ReLU()
|
24 |
+
)
|
25 |
+
(out): Sequential(
|
26 |
+
(0): Linear(in_features=4864, out_features=256, bias=True)
|
27 |
+
(1): RelPositionalEncoding(
|
28 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
29 |
+
)
|
30 |
+
)
|
31 |
+
)
|
32 |
+
(encoders): MultiSequential(
|
33 |
+
(0): EncoderLayer(
|
34 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
35 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
36 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
37 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
38 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
39 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
40 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
41 |
+
)
|
42 |
+
(feed_forward): PositionwiseFeedForward(
|
43 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
44 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
(activation): Swish()
|
47 |
+
)
|
48 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
49 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
50 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
(activation): Swish()
|
53 |
+
)
|
54 |
+
(conv_module): ConvolutionModule(
|
55 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
56 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
57 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
58 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
59 |
+
(activation): Swish()
|
60 |
+
)
|
61 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
62 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
63 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
64 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
65 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(1): EncoderLayer(
|
69 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
70 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
71 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
72 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
73 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
74 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
75 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
76 |
+
)
|
77 |
+
(feed_forward): PositionwiseFeedForward(
|
78 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
79 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
(activation): Swish()
|
82 |
+
)
|
83 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
84 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
85 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
86 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
87 |
+
(activation): Swish()
|
88 |
+
)
|
89 |
+
(conv_module): ConvolutionModule(
|
90 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
91 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
92 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
94 |
+
(activation): Swish()
|
95 |
+
)
|
96 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
99 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
100 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
101 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
102 |
+
)
|
103 |
+
(2): EncoderLayer(
|
104 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
105 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
106 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
107 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
108 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
109 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
110 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
111 |
+
)
|
112 |
+
(feed_forward): PositionwiseFeedForward(
|
113 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
114 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
115 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
116 |
+
(activation): Swish()
|
117 |
+
)
|
118 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
119 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
120 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
(activation): Swish()
|
123 |
+
)
|
124 |
+
(conv_module): ConvolutionModule(
|
125 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
126 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
127 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
129 |
+
(activation): Swish()
|
130 |
+
)
|
131 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
132 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
133 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
134 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
135 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
136 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
137 |
+
)
|
138 |
+
(3): EncoderLayer(
|
139 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
140 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
141 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
142 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
143 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
144 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
145 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
146 |
+
)
|
147 |
+
(feed_forward): PositionwiseFeedForward(
|
148 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
149 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
150 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
151 |
+
(activation): Swish()
|
152 |
+
)
|
153 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
154 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
155 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
156 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
157 |
+
(activation): Swish()
|
158 |
+
)
|
159 |
+
(conv_module): ConvolutionModule(
|
160 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
161 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
162 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
163 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
164 |
+
(activation): Swish()
|
165 |
+
)
|
166 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
167 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
168 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
171 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
172 |
+
)
|
173 |
+
(4): EncoderLayer(
|
174 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
175 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
176 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
177 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
178 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
181 |
+
)
|
182 |
+
(feed_forward): PositionwiseFeedForward(
|
183 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
184 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
185 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
186 |
+
(activation): Swish()
|
187 |
+
)
|
188 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
189 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
190 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
191 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
192 |
+
(activation): Swish()
|
193 |
+
)
|
194 |
+
(conv_module): ConvolutionModule(
|
195 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
196 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
197 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
198 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
199 |
+
(activation): Swish()
|
200 |
+
)
|
201 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
202 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
204 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
205 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
206 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
207 |
+
)
|
208 |
+
(5): EncoderLayer(
|
209 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
210 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
211 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
212 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
213 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
214 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
215 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
216 |
+
)
|
217 |
+
(feed_forward): PositionwiseFeedForward(
|
218 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
219 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
220 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
221 |
+
(activation): Swish()
|
222 |
+
)
|
223 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
224 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
225 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
226 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
227 |
+
(activation): Swish()
|
228 |
+
)
|
229 |
+
(conv_module): ConvolutionModule(
|
230 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
231 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
232 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
233 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
234 |
+
(activation): Swish()
|
235 |
+
)
|
236 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
237 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
238 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
239 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
240 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
(6): EncoderLayer(
|
244 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
245 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
246 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
247 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
248 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
249 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
250 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
251 |
+
)
|
252 |
+
(feed_forward): PositionwiseFeedForward(
|
253 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
254 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
(activation): Swish()
|
257 |
+
)
|
258 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
259 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
260 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
261 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
262 |
+
(activation): Swish()
|
263 |
+
)
|
264 |
+
(conv_module): ConvolutionModule(
|
265 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
266 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
267 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
268 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
269 |
+
(activation): Swish()
|
270 |
+
)
|
271 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
272 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
273 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
274 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
276 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
277 |
+
)
|
278 |
+
(7): EncoderLayer(
|
279 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
280 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
281 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
282 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
283 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
286 |
+
)
|
287 |
+
(feed_forward): PositionwiseFeedForward(
|
288 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
289 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
290 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
291 |
+
(activation): Swish()
|
292 |
+
)
|
293 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
294 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
295 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
297 |
+
(activation): Swish()
|
298 |
+
)
|
299 |
+
(conv_module): ConvolutionModule(
|
300 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
301 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
302 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
303 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
304 |
+
(activation): Swish()
|
305 |
+
)
|
306 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
307 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
308 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
309 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
310 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
311 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
312 |
+
)
|
313 |
+
(8): EncoderLayer(
|
314 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
315 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
316 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
317 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
318 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
320 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
321 |
+
)
|
322 |
+
(feed_forward): PositionwiseFeedForward(
|
323 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
324 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
325 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
326 |
+
(activation): Swish()
|
327 |
+
)
|
328 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
329 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
330 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
331 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
332 |
+
(activation): Swish()
|
333 |
+
)
|
334 |
+
(conv_module): ConvolutionModule(
|
335 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
336 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
337 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
338 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
339 |
+
(activation): Swish()
|
340 |
+
)
|
341 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
342 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
343 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
344 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
345 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
346 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
347 |
+
)
|
348 |
+
(9): EncoderLayer(
|
349 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
350 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
351 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
352 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
353 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
354 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
355 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
356 |
+
)
|
357 |
+
(feed_forward): PositionwiseFeedForward(
|
358 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
359 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
360 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
361 |
+
(activation): Swish()
|
362 |
+
)
|
363 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
364 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
365 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
366 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
367 |
+
(activation): Swish()
|
368 |
+
)
|
369 |
+
(conv_module): ConvolutionModule(
|
370 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
371 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
372 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
373 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
374 |
+
(activation): Swish()
|
375 |
+
)
|
376 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
377 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
378 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
379 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
380 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
381 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
382 |
+
)
|
383 |
+
(10): EncoderLayer(
|
384 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
385 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
386 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
387 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
388 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
389 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
390 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
391 |
+
)
|
392 |
+
(feed_forward): PositionwiseFeedForward(
|
393 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
394 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
395 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
396 |
+
(activation): Swish()
|
397 |
+
)
|
398 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
399 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
400 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
401 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
402 |
+
(activation): Swish()
|
403 |
+
)
|
404 |
+
(conv_module): ConvolutionModule(
|
405 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
406 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
407 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
408 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
409 |
+
(activation): Swish()
|
410 |
+
)
|
411 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
412 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
413 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
414 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
415 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
417 |
+
)
|
418 |
+
(11): EncoderLayer(
|
419 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
420 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
421 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
422 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
423 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
424 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
425 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
426 |
+
)
|
427 |
+
(feed_forward): PositionwiseFeedForward(
|
428 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
429 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
430 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
431 |
+
(activation): Swish()
|
432 |
+
)
|
433 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
434 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
435 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
436 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
437 |
+
(activation): Swish()
|
438 |
+
)
|
439 |
+
(conv_module): ConvolutionModule(
|
440 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
441 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
442 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
443 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
444 |
+
(activation): Swish()
|
445 |
+
)
|
446 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
447 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
448 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
449 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
450 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
451 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
452 |
+
)
|
453 |
+
)
|
454 |
+
(after_norm): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
455 |
+
)
|
456 |
+
(decoder): TransformerDecoder(
|
457 |
+
(embed): Sequential(
|
458 |
+
(0): Embedding(32, 256)
|
459 |
+
(1): PositionalEncoding(
|
460 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
461 |
+
)
|
462 |
+
)
|
463 |
+
(after_norm): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
464 |
+
(output_layer): Linear(in_features=256, out_features=32, bias=True)
|
465 |
+
(decoders): MultiSequential(
|
466 |
+
(0): DecoderLayer(
|
467 |
+
(self_attn): MultiHeadedAttention(
|
468 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
469 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
470 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
471 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
472 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
473 |
+
)
|
474 |
+
(src_attn): MultiHeadedAttention(
|
475 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
476 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
477 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
478 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
479 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
480 |
+
)
|
481 |
+
(feed_forward): PositionwiseFeedForward(
|
482 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
483 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
484 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
485 |
+
(activation): ReLU()
|
486 |
+
)
|
487 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
488 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
489 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
490 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
491 |
+
)
|
492 |
+
(1): DecoderLayer(
|
493 |
+
(self_attn): MultiHeadedAttention(
|
494 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
495 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
496 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
497 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
498 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
499 |
+
)
|
500 |
+
(src_attn): MultiHeadedAttention(
|
501 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
502 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
503 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
504 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
505 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
506 |
+
)
|
507 |
+
(feed_forward): PositionwiseFeedForward(
|
508 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
509 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
510 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
511 |
+
(activation): ReLU()
|
512 |
+
)
|
513 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
514 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
515 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
516 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
517 |
+
)
|
518 |
+
(2): DecoderLayer(
|
519 |
+
(self_attn): MultiHeadedAttention(
|
520 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
521 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
522 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
523 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
524 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
525 |
+
)
|
526 |
+
(src_attn): MultiHeadedAttention(
|
527 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
528 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
529 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
530 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
532 |
+
)
|
533 |
+
(feed_forward): PositionwiseFeedForward(
|
534 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
535 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
536 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
537 |
+
(activation): ReLU()
|
538 |
+
)
|
539 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
540 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
541 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
542 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
543 |
+
)
|
544 |
+
(3): DecoderLayer(
|
545 |
+
(self_attn): MultiHeadedAttention(
|
546 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
547 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
548 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
549 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
550 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
551 |
+
)
|
552 |
+
(src_attn): MultiHeadedAttention(
|
553 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
554 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
555 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
556 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
557 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
558 |
+
)
|
559 |
+
(feed_forward): PositionwiseFeedForward(
|
560 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
561 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
562 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
563 |
+
(activation): ReLU()
|
564 |
+
)
|
565 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
566 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
567 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
568 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
569 |
+
)
|
570 |
+
(4): DecoderLayer(
|
571 |
+
(self_attn): MultiHeadedAttention(
|
572 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
573 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
574 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
575 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
576 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
577 |
+
)
|
578 |
+
(src_attn): MultiHeadedAttention(
|
579 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
580 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
581 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
582 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
583 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
584 |
+
)
|
585 |
+
(feed_forward): PositionwiseFeedForward(
|
586 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
587 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
588 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
589 |
+
(activation): ReLU()
|
590 |
+
)
|
591 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
592 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
593 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
594 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
595 |
+
)
|
596 |
+
(5): DecoderLayer(
|
597 |
+
(self_attn): MultiHeadedAttention(
|
598 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
599 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
600 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
601 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
602 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
603 |
+
)
|
604 |
+
(src_attn): MultiHeadedAttention(
|
605 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
606 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
607 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
608 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
609 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
610 |
+
)
|
611 |
+
(feed_forward): PositionwiseFeedForward(
|
612 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
613 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
614 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
615 |
+
(activation): ReLU()
|
616 |
+
)
|
617 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
618 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
619 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
620 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
621 |
+
)
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(criterion_att): LabelSmoothingLoss(
|
625 |
+
(criterion): KLDivLoss()
|
626 |
+
)
|
627 |
+
)
|
628 |
+
|
629 |
+
Model summary:
|
630 |
+
Class Name: ESPnetASRModel
|
631 |
+
Total Number of model parameters: 43.00 M
|
632 |
+
Number of trainable parameters: 43.00 M (100.0%)
|
633 |
+
Size: 172.01 MB
|
634 |
+
Type: torch.float32
|
635 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:31,624 (abs_task:1233) INFO: Optimizer:
|
636 |
+
Adam (
|
637 |
+
Parameter Group 0
|
638 |
+
amsgrad: False
|
639 |
+
betas: (0.9, 0.999)
|
640 |
+
eps: 1e-08
|
641 |
+
initial_lr: 0.002
|
642 |
+
lr: 1e-07
|
643 |
+
maximize: False
|
644 |
+
weight_decay: 1e-06
|
645 |
+
)
|
646 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:31,624 (abs_task:1234) INFO: Scheduler: WarmupLR(warmup_steps=20000)
|
647 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:31,626 (abs_task:1243) INFO: Saving the configuration in exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/config.yaml
|
648 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:31,692 (abs_task:1304) INFO: Loading pretrained params from /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth
|
649 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:35,293 (asr:461) INFO: Optional Data Names: ('text_spk2', 'text_spk3', 'text_spk4')
|
650 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,615 (abs_task:1614) INFO: [train] dataset:
|
651 |
+
ESPnetDataset(
|
652 |
+
speech: {"path": "dump/raw/train_medium_kaldi_fmt_sp/wav.scp", "type": "kaldi_ark"}
|
653 |
+
text: {"path": "dump/raw/train_medium_kaldi_fmt_sp/text", "type": "text"}
|
654 |
+
preprocess: <espnet2.train.preprocessor.CommonPreprocessor_multi object at 0x7f4603b63730>)
|
655 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,616 (abs_task:1615) INFO: [train] Batch sampler: NumElementsBatchSampler(N-batch=10615, batch_bins=16000000, sort_in_batch=descending, sort_batch=descending)
|
656 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,620 (abs_task:1616) INFO: [train] mini-batch sizes summary: N-batch=10615, mean=53.4, min=7, max=201
|
657 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,737 (asr:461) INFO: Optional Data Names: ('text_spk2', 'text_spk3', 'text_spk4')
|
658 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,747 (abs_task:1614) INFO: [valid] dataset:
|
659 |
+
ESPnetDataset(
|
660 |
+
speech: {"path": "dump/raw/dev_kaldi_fmt/wav.scp", "type": "kaldi_ark"}
|
661 |
+
text: {"path": "dump/raw/dev_kaldi_fmt/text", "type": "text"}
|
662 |
+
preprocess: <espnet2.train.preprocessor.CommonPreprocessor_multi object at 0x7f45f1f856d0>)
|
663 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,747 (abs_task:1615) INFO: [valid] Batch sampler: NumElementsBatchSampler(N-batch=12, batch_bins=16000000, sort_in_batch=descending, sort_batch=descending)
|
664 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,747 (abs_task:1616) INFO: [valid] mini-batch sizes summary: N-batch=12, mean=50.4, min=17, max=82
|
665 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,752 (asr:461) INFO: Optional Data Names: ('text_spk2', 'text_spk3', 'text_spk4')
|
666 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,775 (abs_task:1614) INFO: [plot_att] dataset:
|
667 |
+
ESPnetDataset(
|
668 |
+
speech: {"path": "dump/raw/dev_kaldi_fmt/wav.scp", "type": "kaldi_ark"}
|
669 |
+
text: {"path": "dump/raw/dev_kaldi_fmt/text", "type": "text"}
|
670 |
+
preprocess: <espnet2.train.preprocessor.CommonPreprocessor_multi object at 0x7f45f1f85d60>)
|
671 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,775 (abs_task:1615) INFO: [plot_att] Batch sampler: UnsortedBatchSampler(N-batch=605, batch_size=1, key_file=exp/asr_stats_raw_en_char_sp/valid/speech_shape,
|
672 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:44,775 (abs_task:1616) INFO: [plot_att] mini-batch sizes summary: N-batch=3, mean=1.0, min=1, max=1
|
673 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:48,183 (trainer:159) INFO: The training was resumed using exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/checkpoint.pth
|
674 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823743 [0] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
675 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823743 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
676 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823743 [0] NCCL INFO NET/IB : No device found.
|
677 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823743 [0] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
678 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823743 [0] NCCL INFO Using network Socket
|
679 |
+
NCCL version 2.10.3+cuda10.2
|
680 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823744 [1] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
681 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823745 [2] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
682 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823746 [3] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
683 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823744 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
684 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823745 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
685 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823746 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
686 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823744 [1] NCCL INFO NET/IB : No device found.
|
687 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823744 [1] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
688 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823744 [1] NCCL INFO Using network Socket
|
689 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823746 [3] NCCL INFO NET/IB : No device found.
|
690 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823746 [3] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
691 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823746 [3] NCCL INFO Using network Socket
|
692 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823745 [2] NCCL INFO NET/IB : No device found.
|
693 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823745 [2] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
694 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823745 [2] NCCL INFO Using network Socket
|
695 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Trees [0] -1/-1/-1->3->2 [1] -1/-1/-1->3->2
|
696 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Setting affinity for GPU 3 to 20000002
|
697 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1
|
698 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Setting affinity for GPU 2 to 20000002
|
699 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Channel 00/02 : 0 1 2 3
|
700 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0
|
701 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Channel 01/02 : 0 1 2 3
|
702 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Setting affinity for GPU 1 to 20000002
|
703 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] 1/-1/-1->0->-1
|
704 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Setting affinity for GPU 0 to 20000002
|
705 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Channel 00 : 3[8000] -> 0[4000] via P2P/IPC
|
706 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Channel 00 : 2[7000] -> 3[8000] via P2P/IPC
|
707 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Channel 01 : 2[7000] -> 3[8000] via P2P/IPC
|
708 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Channel 00 : 1[6000] -> 2[7000] via P2P/IPC
|
709 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Channel 01 : 1[6000] -> 2[7000] via P2P/IPC
|
710 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Channel 00 : 0[4000] -> 1[6000] via P2P/IPC
|
711 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Channel 01 : 0[4000] -> 1[6000] via P2P/IPC
|
712 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Channel 01 : 3[8000] -> 0[4000] via P2P/IPC
|
713 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Connected all rings
|
714 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Connected all rings
|
715 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Channel 00 : 3[8000] -> 2[7000] via P2P/IPC
|
716 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Channel 01 : 3[8000] -> 2[7000] via P2P/IPC
|
717 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Connected all rings
|
718 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Channel 00 : 2[7000] -> 1[6000] via P2P/IPC
|
719 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Connected all rings
|
720 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Channel 00 : 1[6000] -> 0[4000] via P2P/IPC
|
721 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Channel 01 : 2[7000] -> 1[6000] via P2P/IPC
|
722 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO Connected all trees
|
723 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
724 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
725 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Channel 01 : 1[6000] -> 0[4000] via P2P/IPC
|
726 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO Connected all trees
|
727 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
728 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
729 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO Connected all trees
|
730 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
731 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
732 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO Connected all trees
|
733 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
734 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
735 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823746:1823875 [3] NCCL INFO comm 0x7f4294001200 rank 3 nranks 4 cudaDev 3 busId 8000 - Init COMPLETE
|
736 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823870 [0] NCCL INFO comm 0x7f450c001200 rank 0 nranks 4 cudaDev 0 busId 4000 - Init COMPLETE
|
737 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823745:1823876 [2] NCCL INFO comm 0x7f631c001200 rank 2 nranks 4 cudaDev 2 busId 7000 - Init COMPLETE
|
738 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823744:1823874 [1] NCCL INFO comm 0x7fa7ac001200 rank 1 nranks 4 cudaDev 1 busId 6000 - Init COMPLETE
|
739 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1823743:1823743 [0] NCCL INFO Launch mode Parallel
|
740 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:44:52,106 (trainer:284) INFO: 9/60epoch started
|
741 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:49:07,241 (distributed:948) INFO: Reducer buckets have been rebuilt in this iteration.
|
742 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 00:55:25,795 (trainer:732) INFO: 9epoch:train:1-530batch: iter_time=0.002, forward_time=0.209, loss_att=107.878, acc=0.904, loss=107.878, backward_time=0.325, grad_norm=103.272, clip=100.000, loss_scale=1.000, optim_step_time=0.085, optim0_lr0=0.002, train_time=4.789
|
743 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:01:45,507 (trainer:732) INFO: 9epoch:train:531-1060batch: iter_time=2.446e-04, forward_time=0.209, loss_att=112.672, acc=0.903, loss=112.672, backward_time=0.327, grad_norm=105.518, clip=100.000, loss_scale=1.000, optim_step_time=0.084, optim0_lr0=0.002, train_time=2.865
|
744 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:08:04,727 (trainer:732) INFO: 9epoch:train:1061-1590batch: iter_time=2.303e-04, forward_time=0.208, loss_att=109.250, acc=0.905, loss=109.250, backward_time=0.327, grad_norm=112.951, clip=100.000, loss_scale=1.000, optim_step_time=0.084, optim0_lr0=0.002, train_time=2.863
|
745 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:14:24,051 (trainer:732) INFO: 9epoch:train:1591-2120batch: iter_time=3.562e-04, forward_time=0.211, loss_att=109.274, acc=0.906, loss=109.274, backward_time=0.327, grad_norm=104.180, clip=100.000, loss_scale=1.000, optim_step_time=0.086, optim0_lr0=0.002, train_time=2.861
|
746 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:20:44,930 (trainer:732) INFO: 9epoch:train:2121-2650batch: iter_time=3.394e-04, forward_time=0.211, loss_att=110.221, acc=0.905, loss=110.221, backward_time=0.328, grad_norm=110.200, clip=100.000, loss_scale=1.000, optim_step_time=0.086, optim0_lr0=0.002, train_time=2.875
|
747 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:27:04,841 (trainer:732) INFO: 9epoch:train:2651-3180batch: iter_time=3.402e-04, forward_time=0.211, loss_att=111.572, acc=0.905, loss=111.572, backward_time=0.328, grad_norm=102.797, clip=100.000, loss_scale=1.000, optim_step_time=0.085, optim0_lr0=0.002, train_time=2.866
|
748 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:33:23,833 (trainer:732) INFO: 9epoch:train:3181-3710batch: iter_time=3.449e-04, forward_time=0.210, loss_att=108.396, acc=0.906, loss=108.396, backward_time=0.327, grad_norm=103.265, clip=100.000, loss_scale=1.000, optim_step_time=0.085, optim0_lr0=0.002, train_time=2.860
|
749 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:39:42,244 (trainer:732) INFO: 9epoch:train:3711-4240batch: iter_time=3.845e-04, forward_time=0.210, loss_att=105.457, acc=0.907, loss=105.457, backward_time=0.326, grad_norm=105.516, clip=100.000, loss_scale=1.000, optim_step_time=0.086, optim0_lr0=0.002, train_time=2.855
|
750 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:46:01,633 (trainer:732) INFO: 9epoch:train:4241-4770batch: iter_time=3.412e-04, forward_time=0.211, loss_att=110.350, acc=0.906, loss=110.350, backward_time=0.327, grad_norm=104.195, clip=100.000, loss_scale=1.000, optim_step_time=0.083, optim0_lr0=0.002, train_time=2.863
|
751 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:52:20,391 (trainer:732) INFO: 9epoch:train:4771-5300batch: iter_time=3.219e-04, forward_time=0.210, loss_att=106.497, acc=0.907, loss=106.497, backward_time=0.327, grad_norm=105.330, clip=100.000, loss_scale=1.000, optim_step_time=0.084, optim0_lr0=0.002, train_time=2.858
|
752 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 01:58:41,240 (trainer:732) INFO: 9epoch:train:5301-5830batch: iter_time=3.283e-04, forward_time=0.211, loss_att=108.151, acc=0.909, loss=108.151, backward_time=0.328, grad_norm=100.440, clip=100.000, loss_scale=1.000, optim_step_time=0.084, optim0_lr0=0.002, train_time=2.875
|
753 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 02:05:01,053 (trainer:732) INFO: 9epoch:train:5831-6360batch: iter_time=3.129e-04, forward_time=0.210, loss_att=107.337, acc=0.908, loss=107.337, backward_time=0.328, grad_norm=105.336, clip=100.000, loss_scale=1.000, optim_step_time=0.083, optim0_lr0=0.002, train_time=2.865
|
754 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 02:11:21,060 (trainer:732) INFO: 9epoch:train:6361-6890batch: iter_time=3.236e-04, forward_time=0.210, loss_att=106.133, acc=0.909, loss=106.133, backward_time=0.328, grad_norm=104.171, clip=100.000, loss_scale=1.000, optim_step_time=0.083, optim0_lr0=0.002, train_time=2.869
|
755 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-20 02:17:40,657 (trainer:732) INFO: 9epoch:train:6891-7420batch: iter_time=3.511e-04, forward_time=0.210, loss_att=107.243, acc=0.908, loss=107.243, backward_time=0.327, grad_norm=108.454, clip=100.000, loss_scale=1.000, optim_step_time=0.085, optim0_lr0=0.002, train_time=2.863
|
756 |
+
Traceback (most recent call last):
|
757 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 197, in _run_module_as_main
|
758 |
+
return _run_code(code, main_globals, None,
|
759 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 87, in _run_code
|
760 |
+
exec(code, run_globals)
|
761 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 23, in <module>
|
762 |
+
main()
|
763 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 19, in main
|
764 |
+
ASRTask.main(cmd=cmd)
|
765 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 1132, in main
|
766 |
+
while not ProcessContext(processes, error_queues).join():
|
767 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 140, in join
|
768 |
+
raise ProcessExitedException(
|
769 |
+
torch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILL
|
770 |
+
# Accounting: time=5952 threads=1
|
771 |
+
# Ended (code 1) at Mon Nov 20 02:22:24 CST 2023, elapsed time 5952 seconds
|
772 |
+
/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 224 leaked semaphore objects to clean up at shutdown
|
773 |
+
warnings.warn('resource_tracker: There appear to be %d '
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.2.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.3.log
ADDED
@@ -0,0 +1,1057 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.asr_train --use_preprocessor true --bpemodel none --token_type char --token_list data/en_token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/wav.scp,speech,kaldi_ark --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/speech_shape --resume true --init_param /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth --ignore_init_mismatch false --fold_length 80000 --output_dir exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new --config conf/tuning/train_sot_asr_conformer_medium.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/asr_stats_raw_en_char_sp/train/feats_stats.npz --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/wav.scp,speech,kaldi_ark --train_shape_file exp/asr_stats_raw_en_char_sp/train/speech_shape --fold_length 150 --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/text,text,text --train_shape_file exp/asr_stats_raw_en_char_sp/train/text_shape.char --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/text,text,text --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/text_shape.char --ngpu 4 --multiprocessing_distributed True
|
2 |
+
# Started at Sat Nov 18 19:32:54 CST 2023
|
3 |
+
#
|
4 |
+
/star-home/jinzengrui/lib/miniconda3/envs/dev39/bin/python3 /star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py --use_preprocessor true --bpemodel none --token_type char --token_list data/en_token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/wav.scp,speech,kaldi_ark --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/speech_shape --resume true --init_param /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth --ignore_init_mismatch false --fold_length 80000 --output_dir exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new --config conf/tuning/train_sot_asr_conformer_medium.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/asr_stats_raw_en_char_sp/train/feats_stats.npz --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/wav.scp,speech,kaldi_ark --train_shape_file exp/asr_stats_raw_en_char_sp/train/speech_shape --fold_length 150 --train_data_path_and_name_and_type dump/raw/train_medium_kaldi_fmt_sp/text,text,text --train_shape_file exp/asr_stats_raw_en_char_sp/train/text_shape.char --valid_data_path_and_name_and_type dump/raw/dev_kaldi_fmt/text,text,text --valid_shape_file exp/asr_stats_raw_en_char_sp/valid/text_shape.char --ngpu 4 --multiprocessing_distributed True
|
5 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:14,486 (distributed_c10d:228) INFO: Added key: store_based_barrier_key:1 to store for rank: 0
|
6 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:14,486 (distributed_c10d:262) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 4 nodes.
|
7 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:14,530 (asr:490) INFO: Vocabulary size: 32
|
8 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:22,927 (abs_task:1229) INFO: pytorch.version=1.11.0+cu102, cuda.available=True, cudnn.version=7605, cudnn.benchmark=False, cudnn.deterministic=True
|
9 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:22,941 (abs_task:1230) INFO: Model structure:
|
10 |
+
ESPnetASRModel(
|
11 |
+
(frontend): DefaultFrontend(
|
12 |
+
(stft): Stft(n_fft=512, win_length=512, hop_length=128, center=True, normalized=False, onesided=True)
|
13 |
+
(frontend): Frontend()
|
14 |
+
(logmel): LogMel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000.0, htk=False)
|
15 |
+
)
|
16 |
+
(normalize): GlobalMVN(stats_file=exp/asr_stats_raw_en_char_sp/train/feats_stats.npz, norm_means=True, norm_vars=True)
|
17 |
+
(encoder): ConformerEncoder(
|
18 |
+
(embed): Conv2dSubsampling(
|
19 |
+
(conv): Sequential(
|
20 |
+
(0): Conv2d(1, 256, kernel_size=(3, 3), stride=(2, 2))
|
21 |
+
(1): ReLU()
|
22 |
+
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2))
|
23 |
+
(3): ReLU()
|
24 |
+
)
|
25 |
+
(out): Sequential(
|
26 |
+
(0): Linear(in_features=4864, out_features=256, bias=True)
|
27 |
+
(1): RelPositionalEncoding(
|
28 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
29 |
+
)
|
30 |
+
)
|
31 |
+
)
|
32 |
+
(encoders): MultiSequential(
|
33 |
+
(0): EncoderLayer(
|
34 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
35 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
36 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
37 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
38 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
39 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
40 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
41 |
+
)
|
42 |
+
(feed_forward): PositionwiseFeedForward(
|
43 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
44 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
(activation): Swish()
|
47 |
+
)
|
48 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
49 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
50 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
(activation): Swish()
|
53 |
+
)
|
54 |
+
(conv_module): ConvolutionModule(
|
55 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
56 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
57 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
58 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
59 |
+
(activation): Swish()
|
60 |
+
)
|
61 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
62 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
63 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
64 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
65 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(1): EncoderLayer(
|
69 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
70 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
71 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
72 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
73 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
74 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
75 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
76 |
+
)
|
77 |
+
(feed_forward): PositionwiseFeedForward(
|
78 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
79 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
(activation): Swish()
|
82 |
+
)
|
83 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
84 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
85 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
86 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
87 |
+
(activation): Swish()
|
88 |
+
)
|
89 |
+
(conv_module): ConvolutionModule(
|
90 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
91 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
92 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
94 |
+
(activation): Swish()
|
95 |
+
)
|
96 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
99 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
100 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
101 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
102 |
+
)
|
103 |
+
(2): EncoderLayer(
|
104 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
105 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
106 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
107 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
108 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
109 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
110 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
111 |
+
)
|
112 |
+
(feed_forward): PositionwiseFeedForward(
|
113 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
114 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
115 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
116 |
+
(activation): Swish()
|
117 |
+
)
|
118 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
119 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
120 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
(activation): Swish()
|
123 |
+
)
|
124 |
+
(conv_module): ConvolutionModule(
|
125 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
126 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
127 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
129 |
+
(activation): Swish()
|
130 |
+
)
|
131 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
132 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
133 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
134 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
135 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
136 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
137 |
+
)
|
138 |
+
(3): EncoderLayer(
|
139 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
140 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
141 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
142 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
143 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
144 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
145 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
146 |
+
)
|
147 |
+
(feed_forward): PositionwiseFeedForward(
|
148 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
149 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
150 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
151 |
+
(activation): Swish()
|
152 |
+
)
|
153 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
154 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
155 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
156 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
157 |
+
(activation): Swish()
|
158 |
+
)
|
159 |
+
(conv_module): ConvolutionModule(
|
160 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
161 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
162 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
163 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
164 |
+
(activation): Swish()
|
165 |
+
)
|
166 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
167 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
168 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
171 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
172 |
+
)
|
173 |
+
(4): EncoderLayer(
|
174 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
175 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
176 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
177 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
178 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
181 |
+
)
|
182 |
+
(feed_forward): PositionwiseFeedForward(
|
183 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
184 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
185 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
186 |
+
(activation): Swish()
|
187 |
+
)
|
188 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
189 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
190 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
191 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
192 |
+
(activation): Swish()
|
193 |
+
)
|
194 |
+
(conv_module): ConvolutionModule(
|
195 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
196 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
197 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
198 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
199 |
+
(activation): Swish()
|
200 |
+
)
|
201 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
202 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
204 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
205 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
206 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
207 |
+
)
|
208 |
+
(5): EncoderLayer(
|
209 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
210 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
211 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
212 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
213 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
214 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
215 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
216 |
+
)
|
217 |
+
(feed_forward): PositionwiseFeedForward(
|
218 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
219 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
220 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
221 |
+
(activation): Swish()
|
222 |
+
)
|
223 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
224 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
225 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
226 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
227 |
+
(activation): Swish()
|
228 |
+
)
|
229 |
+
(conv_module): ConvolutionModule(
|
230 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
231 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
232 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
233 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
234 |
+
(activation): Swish()
|
235 |
+
)
|
236 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
237 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
238 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
239 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
240 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
(6): EncoderLayer(
|
244 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
245 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
246 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
247 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
248 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
249 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
250 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
251 |
+
)
|
252 |
+
(feed_forward): PositionwiseFeedForward(
|
253 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
254 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
(activation): Swish()
|
257 |
+
)
|
258 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
259 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
260 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
261 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
262 |
+
(activation): Swish()
|
263 |
+
)
|
264 |
+
(conv_module): ConvolutionModule(
|
265 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
266 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
267 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
268 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
269 |
+
(activation): Swish()
|
270 |
+
)
|
271 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
272 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
273 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
274 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
276 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
277 |
+
)
|
278 |
+
(7): EncoderLayer(
|
279 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
280 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
281 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
282 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
283 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
286 |
+
)
|
287 |
+
(feed_forward): PositionwiseFeedForward(
|
288 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
289 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
290 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
291 |
+
(activation): Swish()
|
292 |
+
)
|
293 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
294 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
295 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
297 |
+
(activation): Swish()
|
298 |
+
)
|
299 |
+
(conv_module): ConvolutionModule(
|
300 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
301 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
302 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
303 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
304 |
+
(activation): Swish()
|
305 |
+
)
|
306 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
307 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
308 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
309 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
310 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
311 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
312 |
+
)
|
313 |
+
(8): EncoderLayer(
|
314 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
315 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
316 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
317 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
318 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
320 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
321 |
+
)
|
322 |
+
(feed_forward): PositionwiseFeedForward(
|
323 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
324 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
325 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
326 |
+
(activation): Swish()
|
327 |
+
)
|
328 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
329 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
330 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
331 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
332 |
+
(activation): Swish()
|
333 |
+
)
|
334 |
+
(conv_module): ConvolutionModule(
|
335 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
336 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
337 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
338 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
339 |
+
(activation): Swish()
|
340 |
+
)
|
341 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
342 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
343 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
344 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
345 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
346 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
347 |
+
)
|
348 |
+
(9): EncoderLayer(
|
349 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
350 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
351 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
352 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
353 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
354 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
355 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
356 |
+
)
|
357 |
+
(feed_forward): PositionwiseFeedForward(
|
358 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
359 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
360 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
361 |
+
(activation): Swish()
|
362 |
+
)
|
363 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
364 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
365 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
366 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
367 |
+
(activation): Swish()
|
368 |
+
)
|
369 |
+
(conv_module): ConvolutionModule(
|
370 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
371 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
372 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
373 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
374 |
+
(activation): Swish()
|
375 |
+
)
|
376 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
377 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
378 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
379 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
380 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
381 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
382 |
+
)
|
383 |
+
(10): EncoderLayer(
|
384 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
385 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
386 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
387 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
388 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
389 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
390 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
391 |
+
)
|
392 |
+
(feed_forward): PositionwiseFeedForward(
|
393 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
394 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
395 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
396 |
+
(activation): Swish()
|
397 |
+
)
|
398 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
399 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
400 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
401 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
402 |
+
(activation): Swish()
|
403 |
+
)
|
404 |
+
(conv_module): ConvolutionModule(
|
405 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
406 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
407 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
408 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
409 |
+
(activation): Swish()
|
410 |
+
)
|
411 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
412 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
413 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
414 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
415 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
417 |
+
)
|
418 |
+
(11): EncoderLayer(
|
419 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
420 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
421 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
422 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
423 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
424 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
425 |
+
(linear_pos): Linear(in_features=256, out_features=256, bias=False)
|
426 |
+
)
|
427 |
+
(feed_forward): PositionwiseFeedForward(
|
428 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
429 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
430 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
431 |
+
(activation): Swish()
|
432 |
+
)
|
433 |
+
(feed_forward_macaron): PositionwiseFeedForward(
|
434 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
435 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
436 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
437 |
+
(activation): Swish()
|
438 |
+
)
|
439 |
+
(conv_module): ConvolutionModule(
|
440 |
+
(pointwise_conv1): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
441 |
+
(depthwise_conv): Conv1d(256, 256, kernel_size=(31,), stride=(1,), padding=(15,), groups=256)
|
442 |
+
(norm): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
443 |
+
(pointwise_conv2): Conv1d(256, 256, kernel_size=(1,), stride=(1,))
|
444 |
+
(activation): Swish()
|
445 |
+
)
|
446 |
+
(norm_ff): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
447 |
+
(norm_mha): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
448 |
+
(norm_ff_macaron): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
449 |
+
(norm_conv): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
450 |
+
(norm_final): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
451 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
452 |
+
)
|
453 |
+
)
|
454 |
+
(after_norm): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
455 |
+
)
|
456 |
+
(decoder): TransformerDecoder(
|
457 |
+
(embed): Sequential(
|
458 |
+
(0): Embedding(32, 256)
|
459 |
+
(1): PositionalEncoding(
|
460 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
461 |
+
)
|
462 |
+
)
|
463 |
+
(after_norm): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
464 |
+
(output_layer): Linear(in_features=256, out_features=32, bias=True)
|
465 |
+
(decoders): MultiSequential(
|
466 |
+
(0): DecoderLayer(
|
467 |
+
(self_attn): MultiHeadedAttention(
|
468 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
469 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
470 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
471 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
472 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
473 |
+
)
|
474 |
+
(src_attn): MultiHeadedAttention(
|
475 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
476 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
477 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
478 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
479 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
480 |
+
)
|
481 |
+
(feed_forward): PositionwiseFeedForward(
|
482 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
483 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
484 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
485 |
+
(activation): ReLU()
|
486 |
+
)
|
487 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
488 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
489 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
490 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
491 |
+
)
|
492 |
+
(1): DecoderLayer(
|
493 |
+
(self_attn): MultiHeadedAttention(
|
494 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
495 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
496 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
497 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
498 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
499 |
+
)
|
500 |
+
(src_attn): MultiHeadedAttention(
|
501 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
502 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
503 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
504 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
505 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
506 |
+
)
|
507 |
+
(feed_forward): PositionwiseFeedForward(
|
508 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
509 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
510 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
511 |
+
(activation): ReLU()
|
512 |
+
)
|
513 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
514 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
515 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
516 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
517 |
+
)
|
518 |
+
(2): DecoderLayer(
|
519 |
+
(self_attn): MultiHeadedAttention(
|
520 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
521 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
522 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
523 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
524 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
525 |
+
)
|
526 |
+
(src_attn): MultiHeadedAttention(
|
527 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
528 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
529 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
530 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
532 |
+
)
|
533 |
+
(feed_forward): PositionwiseFeedForward(
|
534 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
535 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
536 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
537 |
+
(activation): ReLU()
|
538 |
+
)
|
539 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
540 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
541 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
542 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
543 |
+
)
|
544 |
+
(3): DecoderLayer(
|
545 |
+
(self_attn): MultiHeadedAttention(
|
546 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
547 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
548 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
549 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
550 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
551 |
+
)
|
552 |
+
(src_attn): MultiHeadedAttention(
|
553 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
554 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
555 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
556 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
557 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
558 |
+
)
|
559 |
+
(feed_forward): PositionwiseFeedForward(
|
560 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
561 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
562 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
563 |
+
(activation): ReLU()
|
564 |
+
)
|
565 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
566 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
567 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
568 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
569 |
+
)
|
570 |
+
(4): DecoderLayer(
|
571 |
+
(self_attn): MultiHeadedAttention(
|
572 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
573 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
574 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
575 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
576 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
577 |
+
)
|
578 |
+
(src_attn): MultiHeadedAttention(
|
579 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
580 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
581 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
582 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
583 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
584 |
+
)
|
585 |
+
(feed_forward): PositionwiseFeedForward(
|
586 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
587 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
588 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
589 |
+
(activation): ReLU()
|
590 |
+
)
|
591 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
592 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
593 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
594 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
595 |
+
)
|
596 |
+
(5): DecoderLayer(
|
597 |
+
(self_attn): MultiHeadedAttention(
|
598 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
599 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
600 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
601 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
602 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
603 |
+
)
|
604 |
+
(src_attn): MultiHeadedAttention(
|
605 |
+
(linear_q): Linear(in_features=256, out_features=256, bias=True)
|
606 |
+
(linear_k): Linear(in_features=256, out_features=256, bias=True)
|
607 |
+
(linear_v): Linear(in_features=256, out_features=256, bias=True)
|
608 |
+
(linear_out): Linear(in_features=256, out_features=256, bias=True)
|
609 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
610 |
+
)
|
611 |
+
(feed_forward): PositionwiseFeedForward(
|
612 |
+
(w_1): Linear(in_features=256, out_features=2048, bias=True)
|
613 |
+
(w_2): Linear(in_features=2048, out_features=256, bias=True)
|
614 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
615 |
+
(activation): ReLU()
|
616 |
+
)
|
617 |
+
(norm1): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
618 |
+
(norm2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
619 |
+
(norm3): LayerNorm((256,), eps=1e-12, elementwise_affine=True)
|
620 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
621 |
+
)
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(criterion_att): LabelSmoothingLoss(
|
625 |
+
(criterion): KLDivLoss()
|
626 |
+
)
|
627 |
+
)
|
628 |
+
|
629 |
+
Model summary:
|
630 |
+
Class Name: ESPnetASRModel
|
631 |
+
Total Number of model parameters: 43.00 M
|
632 |
+
Number of trainable parameters: 43.00 M (100.0%)
|
633 |
+
Size: 172.01 MB
|
634 |
+
Type: torch.float32
|
635 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:22,942 (abs_task:1233) INFO: Optimizer:
|
636 |
+
Adam (
|
637 |
+
Parameter Group 0
|
638 |
+
amsgrad: False
|
639 |
+
betas: (0.9, 0.999)
|
640 |
+
eps: 1e-08
|
641 |
+
initial_lr: 0.002
|
642 |
+
lr: 1e-07
|
643 |
+
maximize: False
|
644 |
+
weight_decay: 1e-06
|
645 |
+
)
|
646 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:22,942 (abs_task:1234) INFO: Scheduler: WarmupLR(warmup_steps=20000)
|
647 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:22,945 (abs_task:1243) INFO: Saving the configuration in exp/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/config.yaml
|
648 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:22,967 (abs_task:1304) INFO: Loading pretrained params from /star-home/jinzengrui/dev/espnet/egs2/librimix/sot_asr1_pretrain/exp/asr_train_sot_asr_conformer_raw_en_char_sp/45epoch.pth
|
649 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:25,928 (asr:461) INFO: Optional Data Names: ('text_spk2', 'text_spk3', 'text_spk4')
|
650 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,548 (abs_task:1614) INFO: [train] dataset:
|
651 |
+
ESPnetDataset(
|
652 |
+
speech: {"path": "dump/raw/train_medium_kaldi_fmt_sp/wav.scp", "type": "kaldi_ark"}
|
653 |
+
text: {"path": "dump/raw/train_medium_kaldi_fmt_sp/text", "type": "text"}
|
654 |
+
preprocess: <espnet2.train.preprocessor.CommonPreprocessor_multi object at 0x7f8e24d29490>)
|
655 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,548 (abs_task:1615) INFO: [train] Batch sampler: NumElementsBatchSampler(N-batch=9484, batch_bins=16000000, sort_in_batch=descending, sort_batch=descending)
|
656 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,552 (abs_task:1616) INFO: [train] mini-batch sizes summary: N-batch=9484, mean=41.8, min=10, max=170
|
657 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,657 (asr:461) INFO: Optional Data Names: ('text_spk2', 'text_spk3', 'text_spk4')
|
658 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,665 (abs_task:1614) INFO: [valid] dataset:
|
659 |
+
ESPnetDataset(
|
660 |
+
speech: {"path": "dump/raw/dev_kaldi_fmt/wav.scp", "type": "kaldi_ark"}
|
661 |
+
text: {"path": "dump/raw/dev_kaldi_fmt/text", "type": "text"}
|
662 |
+
preprocess: <espnet2.train.preprocessor.CommonPreprocessor_multi object at 0x7f8e12793700>)
|
663 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,665 (abs_task:1615) INFO: [valid] Batch sampler: NumElementsBatchSampler(N-batch=11, batch_bins=16000000, sort_in_batch=descending, sort_batch=descending)
|
664 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,665 (abs_task:1616) INFO: [valid] mini-batch sizes summary: N-batch=11, mean=41.1, min=22, max=66
|
665 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,671 (asr:461) INFO: Optional Data Names: ('text_spk2', 'text_spk3', 'text_spk4')
|
666 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,697 (abs_task:1614) INFO: [plot_att] dataset:
|
667 |
+
ESPnetDataset(
|
668 |
+
speech: {"path": "dump/raw/dev_kaldi_fmt/wav.scp", "type": "kaldi_ark"}
|
669 |
+
text: {"path": "dump/raw/dev_kaldi_fmt/text", "type": "text"}
|
670 |
+
preprocess: <espnet2.train.preprocessor.CommonPreprocessor_multi object at 0x7f8e12793c70>)
|
671 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,697 (abs_task:1615) INFO: [plot_att] Batch sampler: UnsortedBatchSampler(N-batch=452, batch_size=1, key_file=exp/asr_stats_raw_en_char_sp/valid/speech_shape,
|
672 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:32,697 (abs_task:1616) INFO: [plot_att] mini-batch sizes summary: N-batch=3, mean=1.0, min=1, max=1
|
673 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1753232 [0] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
674 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1753232 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
675 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1753232 [0] NCCL INFO NET/IB : No device found.
|
676 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1753232 [0] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
677 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1753232 [0] NCCL INFO Using network Socket
|
678 |
+
NCCL version 2.10.3+cuda10.2
|
679 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1753233 [1] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
680 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1753234 [2] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
681 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1753233 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
682 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1753234 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
683 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1753235 [3] NCCL INFO Bootstrap : Using eth0:10.177.13.150<0>
|
684 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1753235 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
|
685 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1753233 [1] NCCL INFO NET/IB : No device found.
|
686 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1753233 [1] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
687 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1753233 [1] NCCL INFO Using network Socket
|
688 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1753234 [2] NCCL INFO NET/IB : No device found.
|
689 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1753234 [2] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
690 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1753234 [2] NCCL INFO Using network Socket
|
691 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1753235 [3] NCCL INFO NET/IB : No device found.
|
692 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1753235 [3] NCCL INFO NET/Socket : Using [0]eth0:10.177.13.150<0>
|
693 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1753235 [3] NCCL INFO Using network Socket
|
694 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0
|
695 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Setting affinity for GPU 1 to 20000002
|
696 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1
|
697 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Trees [0] -1/-1/-1->3->2 [1] -1/-1/-1->3->2
|
698 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Channel 00/02 : 0 1 2 3
|
699 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Setting affinity for GPU 2 to 20000002
|
700 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Setting affinity for GPU 5 to 20000002
|
701 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Channel 01/02 : 0 1 2 3
|
702 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] 1/-1/-1->0->-1
|
703 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Setting affinity for GPU 0 to 20000002
|
704 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Channel 00 : 2[7000] -> 3[e000] via direct shared memory
|
705 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Channel 01 : 2[7000] -> 3[e000] via direct shared memory
|
706 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Channel 00 : 1[6000] -> 2[7000] via P2P/IPC
|
707 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Channel 01 : 1[6000] -> 2[7000] via P2P/IPC
|
708 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Channel 00 : 0[4000] -> 1[6000] via P2P/IPC
|
709 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Channel 01 : 0[4000] -> 1[6000] via P2P/IPC
|
710 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Channel 00 : 3[e000] -> 0[4000] via direct shared memory
|
711 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Channel 01 : 3[e000] -> 0[4000] via direct shared memory
|
712 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Connected all rings
|
713 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Channel 00 : 1[6000] -> 0[4000] via P2P/IPC
|
714 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Channel 01 : 1[6000] -> 0[4000] via P2P/IPC
|
715 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Connected all rings
|
716 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Connected all rings
|
717 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO Connected all trees
|
718 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
719 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Connected all rings
|
720 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Channel 00 : 3[e000] -> 2[7000] via direct shared memory
|
721 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
722 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Channel 01 : 3[e000] -> 2[7000] via direct shared memory
|
723 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Channel 00 : 2[7000] -> 1[6000] via P2P/IPC
|
724 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Channel 01 : 2[7000] -> 1[6000] via P2P/IPC
|
725 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO Connected all trees
|
726 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
727 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
728 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO Connected all trees
|
729 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
730 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
731 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO Connected all trees
|
732 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 8/8/512
|
733 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
|
734 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753233:1756016 [1] NCCL INFO comm 0x7fc0a8001200 rank 1 nranks 4 cudaDev 1 busId 6000 - Init COMPLETE
|
735 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753235:1756018 [3] NCCL INFO comm 0x7f483c001200 rank 3 nranks 4 cudaDev 3 busId e000 - Init COMPLETE
|
736 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1756014 [0] NCCL INFO comm 0x7f8d5c001200 rank 0 nranks 4 cudaDev 0 busId 4000 - Init COMPLETE
|
737 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753232:1753232 [0] NCCL INFO Launch mode Parallel
|
738 |
+
de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:1753234:1756017 [2] NCCL INFO comm 0x7fbe0c001200 rank 2 nranks 4 cudaDev 2 busId 7000 - Init COMPLETE
|
739 |
+
[de-74279-k2-train-9-0208143539-7dbf569d4f-r7nrb:0/4] 2023-11-18 19:33:34,575 (trainer:284) INFO: 1/60epoch started
|
740 |
+
Traceback (most recent call last):
|
741 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 197, in _run_module_as_main
|
742 |
+
return _run_code(code, main_globals, None,
|
743 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 87, in _run_code
|
744 |
+
Traceback (most recent call last):
|
745 |
+
File "<string>", line 1, in <module>
|
746 |
+
Traceback (most recent call last):
|
747 |
+
File "<string>", line 1, in <module>
|
748 |
+
Traceback (most recent call last):
|
749 |
+
Traceback (most recent call last):
|
750 |
+
File "<string>", line 1, in <module>
|
751 |
+
File "<string>", line 1, in <module>
|
752 |
+
exec(code, run_globals)
|
753 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 23, in <module>
|
754 |
+
main()
|
755 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 19, in main
|
756 |
+
ASRTask.main(cmd=cmd)
|
757 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 1132, in main
|
758 |
+
while not ProcessContext(processes, error_queues).join():
|
759 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/multiprocessing/spawn.py", line 109, in join
|
760 |
+
ready = multiprocessing.connection.wait(
|
761 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/connection.py", line 931, in wait
|
762 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
|
763 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
|
764 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
|
765 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
|
766 |
+
ready = selector.select(timeout)
|
767 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/selectors.py", line 416, in select
|
768 |
+
exitcode = _main(fd, parent_sentinel)
|
769 |
+
exitcode = _main(fd, parent_sentinel)
|
770 |
+
exitcode = _main(fd, parent_sentinel)
|
771 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 125, in _main
|
772 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 125, in _main
|
773 |
+
exitcode = _main(fd, parent_sentinel)
|
774 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 125, in _main
|
775 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 125, in _main
|
776 |
+
prepare(preparation_data)
|
777 |
+
prepare(preparation_data)
|
778 |
+
prepare(preparation_data)
|
779 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 234, in prepare
|
780 |
+
prepare(preparation_data)
|
781 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 234, in prepare
|
782 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 234, in prepare
|
783 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 234, in prepare
|
784 |
+
fd_event_list = self._selector.poll(timeout)
|
785 |
+
KeyboardInterrupt
|
786 |
+
_fixup_main_from_name(data['init_main_from_name'])
|
787 |
+
_fixup_main_from_name(data['init_main_from_name'])
|
788 |
+
_fixup_main_from_name(data['init_main_from_name'])
|
789 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 258, in _fixup_main_from_name
|
790 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 258, in _fixup_main_from_name
|
791 |
+
_fixup_main_from_name(data['init_main_from_name'])
|
792 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 258, in _fixup_main_from_name
|
793 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/spawn.py", line 258, in _fixup_main_from_name
|
794 |
+
main_content = runpy.run_module(mod_name,
|
795 |
+
main_content = runpy.run_module(mod_name,
|
796 |
+
main_content = runpy.run_module(mod_name,
|
797 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 225, in run_module
|
798 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 225, in run_module
|
799 |
+
main_content = runpy.run_module(mod_name,
|
800 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 225, in run_module
|
801 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 225, in run_module
|
802 |
+
return _run_module_code(code, init_globals, run_name, mod_spec)
|
803 |
+
return _run_module_code(code, init_globals, run_name, mod_spec)
|
804 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 97, in _run_module_code
|
805 |
+
return _run_module_code(code, init_globals, run_name, mod_spec)
|
806 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 97, in _run_module_code
|
807 |
+
return _run_module_code(code, init_globals, run_name, mod_spec)
|
808 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 97, in _run_module_code
|
809 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 97, in _run_module_code
|
810 |
+
_run_code(code, mod_globals, init_globals,
|
811 |
+
_run_code(code, mod_globals, init_globals,
|
812 |
+
_run_code(code, mod_globals, init_globals,
|
813 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 87, in _run_code
|
814 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 87, in _run_code
|
815 |
+
_run_code(code, mod_globals, init_globals,
|
816 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 87, in _run_code
|
817 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/runpy.py", line 87, in _run_code
|
818 |
+
exec(code, run_globals)
|
819 |
+
exec(code, run_globals)
|
820 |
+
exec(code, run_globals)
|
821 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 2, in <module>
|
822 |
+
exec(code, run_globals)
|
823 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 2, in <module>
|
824 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 2, in <module>
|
825 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/bin/asr_train.py", line 2, in <module>
|
826 |
+
from espnet2.tasks.asr import ASRTask
|
827 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/asr.py", line 73, in <module>
|
828 |
+
from espnet2.tasks.asr import ASRTask
|
829 |
+
from espnet2.tasks.asr import ASRTask
|
830 |
+
from espnet2.tasks.asr import ASRTask
|
831 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/asr.py", line 73, in <module>
|
832 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/asr.py", line 73, in <module>
|
833 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/asr.py", line 73, in <module>
|
834 |
+
from espnet2.tasks.abs_task import AbsTask
|
835 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 48, in <module>
|
836 |
+
from espnet2.tasks.abs_task import AbsTask
|
837 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 48, in <module>
|
838 |
+
from espnet2.tasks.abs_task import AbsTask
|
839 |
+
from espnet2.tasks.abs_task import AbsTask
|
840 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 48, in <module>
|
841 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 48, in <module>
|
842 |
+
from espnet2.train.dataset import DATA_TYPES, AbsDataset, ESPnetDataset
|
843 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/dataset.py", line 10, in <module>
|
844 |
+
from espnet2.train.dataset import DATA_TYPES, AbsDataset, ESPnetDataset
|
845 |
+
from espnet2.train.dataset import DATA_TYPES, AbsDataset, ESPnetDataset
|
846 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/dataset.py", line 10, in <module>
|
847 |
+
from espnet2.train.dataset import DATA_TYPES, AbsDataset, ESPnetDataset
|
848 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/dataset.py", line 10, in <module>
|
849 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/dataset.py", line 10, in <module>
|
850 |
+
import h5py
|
851 |
+
import h5py
|
852 |
+
import h5py
|
853 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/__init__.py", line 58, in <module>
|
854 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/__init__.py", line 58, in <module>
|
855 |
+
import h5py
|
856 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/__init__.py", line 58, in <module>
|
857 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/__init__.py", line 58, in <module>
|
858 |
+
from ._hl import filters
|
859 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/_hl/filters.py", line 44, in <module>
|
860 |
+
from ._hl import filters
|
861 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/_hl/filters.py", line 44, in <module>
|
862 |
+
from ._hl import filters
|
863 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/_hl/filters.py", line 44, in <module>
|
864 |
+
from ._hl import filters
|
865 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/h5py/_hl/filters.py", line 44, in <module>
|
866 |
+
from .base import product
|
867 |
+
File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
|
868 |
+
from .base import product
|
869 |
+
File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
|
870 |
+
from .base import product
|
871 |
+
File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
|
872 |
+
from .base import product
|
873 |
+
File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
|
874 |
+
File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
|
875 |
+
File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
|
876 |
+
File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
|
877 |
+
File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
|
878 |
+
File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
|
879 |
+
File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
|
880 |
+
File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
|
881 |
+
File "<frozen importlib._bootstrap_external>", line 846, in exec_module
|
882 |
+
File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
|
883 |
+
File "<frozen importlib._bootstrap_external>", line 846, in exec_module
|
884 |
+
File "<frozen importlib._bootstrap_external>", line 846, in exec_module
|
885 |
+
File "<frozen importlib._bootstrap_external>", line 941, in get_code
|
886 |
+
File "<frozen importlib._bootstrap_external>", line 941, in get_code
|
887 |
+
File "<frozen importlib._bootstrap_external>", line 941, in get_code
|
888 |
+
File "<frozen importlib._bootstrap_external>", line 1039, in get_data
|
889 |
+
File "<frozen importlib._bootstrap_external>", line 1039, in get_data
|
890 |
+
File "<frozen importlib._bootstrap_external>", line 846, in exec_module
|
891 |
+
KeyboardInterrupt
|
892 |
+
File "<frozen importlib._bootstrap_external>", line 1039, in get_data
|
893 |
+
File "<frozen importlib._bootstrap_external>", line 941, in get_code
|
894 |
+
KeyboardInterrupt
|
895 |
+
KeyboardInterrupt
|
896 |
+
File "<frozen importlib._bootstrap_external>", line 1039, in get_data
|
897 |
+
KeyboardInterrupt
|
898 |
+
Process SpawnProcess-3:
|
899 |
+
Process SpawnProcess-1:
|
900 |
+
Process SpawnProcess-4:
|
901 |
+
Process SpawnProcess-2:
|
902 |
+
Traceback (most recent call last):
|
903 |
+
Traceback (most recent call last):
|
904 |
+
Traceback (most recent call last):
|
905 |
+
Traceback (most recent call last):
|
906 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 315, in _bootstrap
|
907 |
+
self.run()
|
908 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 315, in _bootstrap
|
909 |
+
self.run()
|
910 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 108, in run
|
911 |
+
self._target(*self._args, **self._kwargs)
|
912 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 315, in _bootstrap
|
913 |
+
self.run()
|
914 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 108, in run
|
915 |
+
self._target(*self._args, **self._kwargs)
|
916 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 1391, in main_worker
|
917 |
+
cls.trainer.run(
|
918 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 315, in _bootstrap
|
919 |
+
self.run()
|
920 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 108, in run
|
921 |
+
self._target(*self._args, **self._kwargs)
|
922 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 1391, in main_worker
|
923 |
+
cls.trainer.run(
|
924 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 290, in run
|
925 |
+
all_steps_are_invalid = cls.train_one_epoch(
|
926 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 108, in run
|
927 |
+
self._target(*self._args, **self._kwargs)
|
928 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 1391, in main_worker
|
929 |
+
cls.trainer.run(
|
930 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 290, in run
|
931 |
+
all_steps_are_invalid = cls.train_one_epoch(
|
932 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 510, in train_one_epoch
|
933 |
+
for iiter, (utt_id, batch) in enumerate(
|
934 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/tasks/abs_task.py", line 1391, in main_worker
|
935 |
+
cls.trainer.run(
|
936 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 290, in run
|
937 |
+
all_steps_are_invalid = cls.train_one_epoch(
|
938 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 510, in train_one_epoch
|
939 |
+
for iiter, (utt_id, batch) in enumerate(
|
940 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/reporter.py", line 263, in measure_iter_time
|
941 |
+
iterator = iter(iterable)
|
942 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 290, in run
|
943 |
+
all_steps_are_invalid = cls.train_one_epoch(
|
944 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 510, in train_one_epoch
|
945 |
+
for iiter, (utt_id, batch) in enumerate(
|
946 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/reporter.py", line 263, in measure_iter_time
|
947 |
+
iterator = iter(iterable)
|
948 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 368, in __iter__
|
949 |
+
return self._get_iterator()
|
950 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/trainer.py", line 510, in train_one_epoch
|
951 |
+
for iiter, (utt_id, batch) in enumerate(
|
952 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/reporter.py", line 263, in measure_iter_time
|
953 |
+
iterator = iter(iterable)
|
954 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 368, in __iter__
|
955 |
+
return self._get_iterator()
|
956 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 314, in _get_iterator
|
957 |
+
return _MultiProcessingDataLoaderIter(self)
|
958 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/espnet-202308-py3.9.egg/espnet2/train/reporter.py", line 263, in measure_iter_time
|
959 |
+
iterator = iter(iterable)
|
960 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 368, in __iter__
|
961 |
+
return self._get_iterator()
|
962 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 314, in _get_iterator
|
963 |
+
return _MultiProcessingDataLoaderIter(self)
|
964 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 927, in __init__
|
965 |
+
w.start()
|
966 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 368, in __iter__
|
967 |
+
return self._get_iterator()
|
968 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 314, in _get_iterator
|
969 |
+
return _MultiProcessingDataLoaderIter(self)
|
970 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 927, in __init__
|
971 |
+
w.start()
|
972 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 121, in start
|
973 |
+
self._popen = self._Popen(self)
|
974 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 314, in _get_iterator
|
975 |
+
return _MultiProcessingDataLoaderIter(self)
|
976 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 927, in __init__
|
977 |
+
w.start()
|
978 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 121, in start
|
979 |
+
self._popen = self._Popen(self)
|
980 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 224, in _Popen
|
981 |
+
return _default_context.get_context().Process._Popen(process_obj)
|
982 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 927, in __init__
|
983 |
+
w.start()
|
984 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 121, in start
|
985 |
+
self._popen = self._Popen(self)
|
986 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 224, in _Popen
|
987 |
+
return _default_context.get_context().Process._Popen(process_obj)
|
988 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 224, in _Popen
|
989 |
+
return _default_context.get_context().Process._Popen(process_obj)
|
990 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 284, in _Popen
|
991 |
+
return Popen(process_obj)
|
992 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/process.py", line 121, in start
|
993 |
+
self._popen = self._Popen(self)
|
994 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 284, in _Popen
|
995 |
+
return Popen(process_obj)
|
996 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 284, in _Popen
|
997 |
+
return Popen(process_obj)
|
998 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
999 |
+
super().__init__(process_obj)
|
1000 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 224, in _Popen
|
1001 |
+
return _default_context.get_context().Process._Popen(process_obj)
|
1002 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
1003 |
+
super().__init__(process_obj)
|
1004 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
1005 |
+
super().__init__(process_obj)
|
1006 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_fork.py", line 19, in __init__
|
1007 |
+
self._launch(process_obj)
|
1008 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_fork.py", line 19, in __init__
|
1009 |
+
self._launch(process_obj)
|
1010 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/context.py", line 284, in _Popen
|
1011 |
+
return Popen(process_obj)
|
1012 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_fork.py", line 19, in __init__
|
1013 |
+
self._launch(process_obj)
|
1014 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 62, in _launch
|
1015 |
+
f.write(fp.getbuffer())
|
1016 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 62, in _launch
|
1017 |
+
f.write(fp.getbuffer())
|
1018 |
+
KeyboardInterrupt
|
1019 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 32, in __init__
|
1020 |
+
super().__init__(process_obj)
|
1021 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 62, in _launch
|
1022 |
+
f.write(fp.getbuffer())
|
1023 |
+
KeyboardInterrupt
|
1024 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_fork.py", line 19, in __init__
|
1025 |
+
self._launch(process_obj)
|
1026 |
+
KeyboardInterrupt
|
1027 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 62, in _launch
|
1028 |
+
f.write(fp.getbuffer())
|
1029 |
+
KeyboardInterrupt
|
1030 |
+
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7fc1763ce5e0>
|
1031 |
+
Traceback (most recent call last):
|
1032 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1358, in __del__
|
1033 |
+
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7f490af825e0>
|
1034 |
+
Traceback (most recent call last):
|
1035 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1358, in __del__
|
1036 |
+
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7fbedaa735e0>
|
1037 |
+
Traceback (most recent call last):
|
1038 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1358, in __del__
|
1039 |
+
self._shutdown_workers()
|
1040 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1316, in _shutdown_workers
|
1041 |
+
self._shutdown_workers()
|
1042 |
+
self._shutdown_workers()
|
1043 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1316, in _shutdown_workers
|
1044 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1316, in _shutdown_workers
|
1045 |
+
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7f8e352eb5e0>
|
1046 |
+
Traceback (most recent call last):
|
1047 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1358, in __del__
|
1048 |
+
if self._persistent_workers or self._workers_status[worker_id]:
|
1049 |
+
if self._persistent_workers or self._workers_status[worker_id]:
|
1050 |
+
if self._persistent_workers or self._workers_status[worker_id]:
|
1051 |
+
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_workers_status'
|
1052 |
+
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_workers_status'
|
1053 |
+
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_workers_status'
|
1054 |
+
self._shutdown_workers()
|
1055 |
+
File "/star-home/jinzengrui/lib/miniconda3/envs/dev39/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1316, in _shutdown_workers
|
1056 |
+
if self._persistent_workers or self._workers_status[worker_id]:
|
1057 |
+
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_workers_status'
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/train.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/valid.acc.ave.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6942cd8e2a7d9015a74726b4164bd69324059cb230e97ebccf434f6b1afdee4c
|
3 |
+
size 172358249
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/valid.acc.ave_10best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6942cd8e2a7d9015a74726b4164bd69324059cb230e97ebccf434f6b1afdee4c
|
3 |
+
size 172358249
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new/valid.acc.best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63fced0fdc8817cd4f376fe8e33ffc3b07a8615ce2151f6b5bd6be0990bb75ff
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/48epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5a83dbcc31cbe211bf57d554185f00fdefa382c828fadc33a1202749a7cafbc
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/52epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8359149a4f68dfaf1fb54be64f57b199f0c2a2ce86c123ca9479a8f29854ab59
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/53epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f7928e027e6aaca6f547f40d08d36ed21ec877c81f13b6e8432ffd119a4f635
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/54epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2917e31143d7136e849de1dee47a99942384a481fe11ed989b17d7faf676170c
|
3 |
+
size 172367337
|
medium/asr_train_sot_asr_conformer_raw_en_char_sp_finetune_ls100_45epoch_new_whamr/55epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:035c566070194c490d66447e070ae13154064c7d387b0e57a13693deabadd34d
|
3 |
+
size 172367337
|