--- language: - eu license: apache-2.0 base_model: openai/whisper-large tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: validation args: eu metrics: - name: Wer type: wer value: 13.167704366398677 --- # Whisper Large Basque This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.4229 - Wer: 13.1677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.067 | 5.85 | 1000 | 0.2644 | 15.8677 | | 0.0123 | 11.7 | 2000 | 0.3077 | 14.6326 | | 0.0052 | 17.54 | 3000 | 0.3317 | 14.1853 | | 0.0037 | 23.39 | 4000 | 0.3387 | 14.0885 | | 0.0026 | 29.24 | 5000 | 0.3559 | 14.2618 | | 0.0026 | 35.09 | 6000 | 0.3604 | 14.2155 | | 0.002 | 40.94 | 7000 | 0.3734 | 14.1228 | | 0.0012 | 46.78 | 8000 | 0.3773 | 14.0301 | | 0.0012 | 52.63 | 9000 | 0.3802 | 13.9072 | | 0.0012 | 58.48 | 10000 | 0.3850 | 14.4734 | | 0.0006 | 64.33 | 11000 | 0.3896 | 13.6513 | | 0.0011 | 70.18 | 12000 | 0.3981 | 13.6311 | | 0.001 | 76.02 | 13000 | 0.3947 | 13.5949 | | 0.0002 | 81.87 | 14000 | 0.4039 | 13.6170 | | 0.0001 | 87.72 | 15000 | 0.4057 | 13.4579 | | 0.0008 | 93.57 | 16000 | 0.4119 | 13.2745 | | 0.0001 | 99.42 | 17000 | 0.4203 | 13.1717 | | 0.0001 | 105.26 | 18000 | 0.4166 | 13.0972 | | 0.0001 | 111.11 | 19000 | 0.4243 | 13.0448 | | 0.0 | 116.96 | 20000 | 0.4229 | 13.1677 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1