--- language: - ca license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Medium Catalan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 ca type: mozilla-foundation/common_voice_13_0 config: ca split: test args: ca metrics: - name: Wer type: wer value: 5.995427264932838 --- # Whisper Medium Catalan This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 ca dataset. It achieves the following results on the evaluation set: - Loss: 0.1434 - Wer: 5.9954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1158 | 1.05 | 1000 | 0.1846 | 8.3630 | | 0.0184 | 3.05 | 2000 | 0.2017 | 8.0629 | | 0.0522 | 5.04 | 3000 | 0.1940 | 8.1177 | | 0.0595 | 7.04 | 4000 | 0.1742 | 7.4696 | | 0.0179 | 9.04 | 5000 | 0.1899 | 7.3095 | | 0.0646 | 11.04 | 6000 | 0.1555 | 6.3441 | | 0.0825 | 13.03 | 7000 | 0.1810 | 6.4841 | | 0.0309 | 15.03 | 8000 | 0.1464 | 6.3544 | | 0.0695 | 17.03 | 9000 | 0.1434 | 5.9954 | | 0.0186 | 19.03 | 10000 | 0.1706 | 6.1097 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3