File size: 2,143 Bytes
1e921bf 1df61a5 1e921bf 1df61a5 1e921bf 1df61a5 1e921bf 1df61a5 1e921bf 1df61a5 1e921bf 1df61a5 1e921bf 1df61a5 1e921bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- gl
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Tiny Galician
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 gl
type: mozilla-foundation/common_voice_13_0
config: gl
split: validation
args: gl
metrics:
- name: Wer
type: wer
value: 27.05703316847093
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Galician
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_13_0 gl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6343
- Wer: 27.0570
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.75e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3105 | 23.26 | 1000 | 0.5440 | 30.7025 |
| 0.0797 | 46.51 | 2000 | 0.5683 | 28.1984 |
| 0.0326 | 69.77 | 3000 | 0.6091 | 27.9701 |
| 0.0209 | 93.02 | 4000 | 0.6289 | 27.7176 |
| 0.0172 | 116.28 | 5000 | 0.6343 | 27.0570 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|