File size: 7,078 Bytes
8d7ec14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import torch
import ldm_patched.modules.utils
import ldm_patched.controlnet
from ldm_patched.modules.controlnet import ControlLora, ControlNet, load_t2i_adapter
from modules_forge.controlnet import apply_controlnet_advanced
from modules_forge.shared import add_supported_control_model
class ControlModelPatcher:
@staticmethod
def try_build_from_state_dict(state_dict, ckpt_path):
return None
def __init__(self, model_patcher=None):
self.model_patcher = model_patcher
self.strength = 1.0
self.start_percent = 0.0
self.end_percent = 1.0
self.positive_advanced_weighting = None
self.negative_advanced_weighting = None
self.advanced_frame_weighting = None
self.advanced_sigma_weighting = None
self.advanced_mask_weighting = None
def process_after_running_preprocessors(self, process, params, *args, **kwargs):
return
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
return
def process_after_every_sampling(self, process, params, *args, **kwargs):
return
class ControlNetPatcher(ControlModelPatcher):
@staticmethod
def try_build_from_state_dict(controlnet_data, ckpt_path):
if "lora_controlnet" in controlnet_data:
return ControlNetPatcher(ControlLora(controlnet_data))
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: # diffusers format
unet_dtype = ldm_patched.modules.model_management.unet_dtype()
controlnet_config = ldm_patched.modules.model_detection.unet_config_from_diffusers_unet(controlnet_data,
unet_dtype)
diffusers_keys = ldm_patched.modules.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
print("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data)
if net is None:
return None
return ControlNetPatcher(net)
if controlnet_config is None:
unet_dtype = ldm_patched.modules.model_management.unet_dtype()
controlnet_config = ldm_patched.modules.model_detection.model_config_from_unet(controlnet_data, prefix,
unet_dtype, True).unet_config
load_device = ldm_patched.modules.model_management.get_torch_device()
manual_cast_dtype = ldm_patched.modules.model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype is not None:
controlnet_config["operations"] = ldm_patched.modules.ops.manual_cast
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = ldm_patched.controlnet.cldm.ControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
print("WARNING: Your controlnet model is diff version rather than official float16 model. "
"Please use an official float16/float32 model for robust performance.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
print(missing, unexpected)
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"):
# TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device,
manual_cast_dtype=manual_cast_dtype)
return ControlNetPatcher(control)
def __init__(self, model_patcher):
super().__init__(model_patcher)
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
unet = process.sd_model.forge_objects.unet
unet = apply_controlnet_advanced(
unet=unet,
controlnet=self.model_patcher,
image_bchw=cond,
strength=self.strength,
start_percent=self.start_percent,
end_percent=self.end_percent,
positive_advanced_weighting=self.positive_advanced_weighting,
negative_advanced_weighting=self.negative_advanced_weighting,
advanced_frame_weighting=self.advanced_frame_weighting,
advanced_sigma_weighting=self.advanced_sigma_weighting,
advanced_mask_weighting=self.advanced_mask_weighting
)
process.sd_model.forge_objects.unet = unet
return
add_supported_control_model(ControlNetPatcher)
|