|
import torch |
|
import gradio as gr |
|
import os |
|
import pathlib |
|
|
|
from modules import script_callbacks |
|
from modules.paths import models_path |
|
from modules.ui_common import ToolButton, refresh_symbol |
|
from modules.ui_components import ResizeHandleRow |
|
from modules import shared |
|
|
|
from modules_forge.forge_util import numpy_to_pytorch, pytorch_to_numpy |
|
from ldm_patched.modules.sd import load_checkpoint_guess_config |
|
from ldm_patched.contrib.external_stable3d import StableZero123_Conditioning |
|
from ldm_patched.contrib.external import KSampler, VAEDecode |
|
|
|
|
|
opStableZero123_Conditioning = StableZero123_Conditioning() |
|
opKSampler = KSampler() |
|
opVAEDecode = VAEDecode() |
|
|
|
model_root = os.path.join(models_path, 'z123') |
|
os.makedirs(model_root, exist_ok=True) |
|
model_filenames = [] |
|
|
|
|
|
def update_model_filenames(): |
|
global model_filenames |
|
model_filenames = [ |
|
pathlib.Path(x).name for x in |
|
shared.walk_files(model_root, allowed_extensions=[".pt", ".ckpt", ".safetensors"]) |
|
] |
|
return model_filenames |
|
|
|
|
|
@torch.inference_mode() |
|
@torch.no_grad() |
|
def predict(filename, width, height, batch_size, elevation, azimuth, |
|
sampling_seed, sampling_steps, sampling_cfg, sampling_sampler_name, sampling_scheduler, sampling_denoise, input_image): |
|
filename = os.path.join(model_root, filename) |
|
model, _, vae, clip_vision = \ |
|
load_checkpoint_guess_config(filename, output_vae=True, output_clip=False, output_clipvision=True) |
|
init_image = numpy_to_pytorch(input_image) |
|
positive, negative, latent_image = opStableZero123_Conditioning.encode( |
|
clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth) |
|
output_latent = opKSampler.sample(model, sampling_seed, sampling_steps, sampling_cfg, |
|
sampling_sampler_name, sampling_scheduler, positive, |
|
negative, latent_image, sampling_denoise)[0] |
|
output_pixels = opVAEDecode.decode(vae, output_latent)[0] |
|
outputs = pytorch_to_numpy(output_pixels) |
|
return outputs |
|
|
|
|
|
def on_ui_tabs(): |
|
with gr.Blocks() as model_block: |
|
with ResizeHandleRow(): |
|
with gr.Column(): |
|
input_image = gr.Image(label='Input Image', source='upload', type='numpy', height=400) |
|
|
|
with gr.Row(): |
|
filename = gr.Dropdown(label="Zero123 Checkpoint Filename", |
|
choices=model_filenames, |
|
value=model_filenames[0] if len(model_filenames) > 0 else None) |
|
refresh_button = ToolButton(value=refresh_symbol, tooltip="Refresh") |
|
refresh_button.click( |
|
fn=lambda: gr.update(choices=update_model_filenames), |
|
inputs=[], outputs=filename) |
|
|
|
width = gr.Slider(label='Width', minimum=16, maximum=8192, step=8, value=256) |
|
height = gr.Slider(label='Height', minimum=16, maximum=8192, step=8, value=256) |
|
batch_size = gr.Slider(label='Batch Size', minimum=1, maximum=4096, step=1, value=4) |
|
elevation = gr.Slider(label='Elevation', minimum=-180.0, maximum=180.0, step=0.001, value=10.0) |
|
azimuth = gr.Slider(label='Azimuth', minimum=-180.0, maximum=180.0, step=0.001, value=142.0) |
|
sampling_denoise = gr.Slider(label='Sampling Denoise', minimum=0.0, maximum=1.0, step=0.01, value=1.0) |
|
sampling_steps = gr.Slider(label='Sampling Steps', minimum=1, maximum=10000, step=1, value=20) |
|
sampling_cfg = gr.Slider(label='CFG Scale', minimum=0.0, maximum=100.0, step=0.1, value=5.0) |
|
sampling_sampler_name = gr.Radio(label='Sampler Name', |
|
choices=['euler', 'euler_ancestral', 'heun', 'heunpp2', 'dpm_2', |
|
'dpm_2_ancestral', 'lms', 'dpm_fast', 'dpm_adaptive', |
|
'dpmpp_2s_ancestral', 'dpmpp_sde', 'dpmpp_sde_gpu', |
|
'dpmpp_2m', 'dpmpp_2m_sde', 'dpmpp_2m_sde_gpu', |
|
'dpmpp_3m_sde', 'dpmpp_3m_sde_gpu', 'ddpm', 'lcm', 'ddim', |
|
'uni_pc', 'uni_pc_bh2'], value='euler') |
|
sampling_scheduler = gr.Radio(label='Sampling Scheduler', |
|
choices=['normal', 'karras', 'exponential', 'sgm_uniform', 'simple', |
|
'ddim_uniform'], value='sgm_uniform') |
|
sampling_seed = gr.Number(label='Seed', value=12345, precision=0) |
|
generate_button = gr.Button(value="Generate") |
|
|
|
ctrls = [filename, width, height, batch_size, elevation, azimuth, sampling_seed, sampling_steps, sampling_cfg, sampling_sampler_name, sampling_scheduler, sampling_denoise, input_image] |
|
|
|
with gr.Column(): |
|
output_gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain', |
|
visible=True, height=1024, columns=4) |
|
|
|
generate_button.click(predict, inputs=ctrls, outputs=[output_gallery]) |
|
return [(model_block, "Z123", "z123")] |
|
|
|
|
|
update_model_filenames() |
|
script_callbacks.on_ui_tabs(on_ui_tabs) |
|
|