--- base_model: zwaarcontrast/lilt-xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1 results: [] --- # lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1 This model is a fine-tuned version of [zwaarcontrast/lilt-xlm-roberta-base](https://huggingface.co/zwaarcontrast/lilt-xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0645 - Precision: 0.8277 - Recall: 0.8277 - F1: 0.8277 - Accuracy: 0.8277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.05 | 100 | 0.1162 | 0.6875 | 0.6875 | 0.6875 | 0.6875 | | No log | 0.11 | 200 | 0.1097 | 0.6755 | 0.6755 | 0.6755 | 0.6755 | | No log | 0.16 | 300 | 0.0866 | 0.7781 | 0.7781 | 0.7781 | 0.7781 | | No log | 0.21 | 400 | 0.1018 | 0.7478 | 0.7478 | 0.7478 | 0.7478 | | 0.0975 | 0.27 | 500 | 0.0645 | 0.8277 | 0.8277 | 0.8277 | 0.8277 | | 0.0975 | 0.32 | 600 | 0.0767 | 0.7985 | 0.7985 | 0.7985 | 0.7985 | | 0.0975 | 0.37 | 700 | 0.0758 | 0.7903 | 0.7903 | 0.7903 | 0.7903 | | 0.0975 | 0.43 | 800 | 0.0862 | 0.7865 | 0.7865 | 0.7865 | 0.7865 | | 0.0975 | 0.48 | 900 | 0.1243 | 0.6892 | 0.6892 | 0.6892 | 0.6892 | | 0.1389 | 0.53 | 1000 | 0.0795 | 0.8256 | 0.8256 | 0.8256 | 0.8256 | | 0.1389 | 0.59 | 1100 | 0.1683 | 0.4702 | 0.4702 | 0.4702 | 0.4702 | | 0.1389 | 0.64 | 1200 | 0.1253 | 0.6636 | 0.6636 | 0.6636 | 0.6636 | | 0.1389 | 0.69 | 1300 | 0.1044 | 0.7295 | 0.7295 | 0.7295 | 0.7295 | | 0.1389 | 0.75 | 1400 | 0.1235 | 0.6477 | 0.6477 | 0.6477 | 0.6477 | | 0.1018 | 0.8 | 1500 | 0.1113 | 0.7276 | 0.7276 | 0.7276 | 0.7276 | | 0.1018 | 0.85 | 1600 | 0.1014 | 0.7317 | 0.7317 | 0.7317 | 0.7317 | | 0.1018 | 0.91 | 1700 | 0.0963 | 0.7293 | 0.7293 | 0.7293 | 0.7293 | | 0.1018 | 0.96 | 1800 | 0.1012 | 0.7323 | 0.7323 | 0.7323 | 0.7323 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1