File size: 2,095 Bytes
0d8062d 91add9d 0d8062d 91add9d 0d8062d 91add9d 0d8062d 91add9d 0d8062d 91add9d 0d8062d 91add9d 0d8062d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- azaheadhealth
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: microtest
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: azaheadhealth
type: azaheadhealth
config: micro
split: test
args: micro
metrics:
- name: Accuracy
type: accuracy
value: 1.0
- name: F1
type: f1
value: 1.0
- name: Precision
type: precision
value: 1.0
- name: Recall
type: recall
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microtest
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6111
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:|
| 0.5955 | 0.5 | 1 | 0.6676 | 0.5 | 0.5 | 0.5 | 0.5 |
| 0.633 | 1.0 | 2 | 0.6111 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.13.2
|