File size: 1,245 Bytes
1983f75
 
 
6e4604e
1983f75
 
6e4604e
 
1983f75
 
 
 
 
 
 
 
 
 
 
915cf97
1983f75
 
 
 
6e4604e
1983f75
6e4604e
 
 
 
 
 
 
 
 
0869ad4
6e4604e
 
 
fe5f2a7
19013a1
 
6e4604e
 
 
 
915cf97
fe5f2a7
6e4604e
 
19013a1
6e4604e
 
915cf97
6e4604e
19013a1
6e4604e
19013a1
fe5f2a7
6e4604e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: LunarLander-v2
      type: LunarLander-v2
    metrics:
    - type: mean_reward
      value: -27.96 +/- 50.99
      name: mean_reward
      verified: false
---

  # PPO Agent Playing LunarLander-v2

  This is a trained model of a PPO agent playing LunarLander-v2.
    
  # Hyperparameters
  ```python
  {'exp_name': '/home/zz/DOD/DeepRL/HuggingFaceCourse/Proximal Policy Optimization'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'ppoLunarLander'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 500000
'learning_rate': 5e-05
'num_envs': 8
'num_steps': 1024
'anneal_lr': True
'gae': True
'gamma': 0.999
'gae_lambda': 0.956973
'num_minibatches': 128
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.384411
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.686165
'max_grad_norm': 0.5
'target_kl': 0.01
'repo_id': 'zzen0008/ppo-LunarLander-v2'
'batch_size': 8192
'minibatch_size': 64}
  ```