|
--- |
|
library_name: peft |
|
base_model: owkin/phikon |
|
tags: |
|
- feature-extraction |
|
- image-classification |
|
- biology |
|
- cancer |
|
- owkin |
|
- histology |
|
model-index: |
|
- name: owkin_pancancer |
|
results: |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: 1aurent/Kather-texture-2016 |
|
type: image-classification |
|
metrics: |
|
- type: accuracy |
|
value: 0.99 |
|
name: accuracy |
|
verified: false |
|
license: other |
|
license_name: owkin-non-commercial |
|
license_link: https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt |
|
pipeline_tag: image-classification |
|
datasets: |
|
- 1aurent/Kather-texture-2016 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- src: https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg |
|
example_title: adipose |
|
--- |
|
|
|
# Model card for phikon-finetuned-lora-kather2016 |
|
|
|
This model is a fine-tuned version of [owkin/phikon](https://huggingface.co/owkin/phikon) on the [1aurent/Kather-texture-2016](https://huggingface.co/datasets/1aurent/Kather-texture-2016) dataset. |
|
|
|
## Model Usage |
|
|
|
### Image Classification |
|
```python |
|
from transformers import AutoModelForImageClassification, AutoImageProcessor |
|
from peft import PeftConfig, PeftModel |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
|
|
# get example histology image |
|
img = Image.open( |
|
urlopen( |
|
"https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg" |
|
) |
|
) |
|
|
|
# load config, image_processor, base_model and lora_model from the hub |
|
model_name = "1aurent/phikon-finetuned-lora-kather2016" |
|
config = PeftConfig.from_pretrained( |
|
pretrained_model_name_or_path=model_name |
|
) |
|
image_processor = AutoImageProcessor.from_pretrained( |
|
pretrained_model_name_or_path=config.base_model_name_or_path |
|
) |
|
model = AutoModelForImageClassification.from_pretrained( |
|
pretrained_model_name_or_path=config.base_model_name_or_path, |
|
num_labels=8, |
|
) |
|
lora_model = PeftModel.from_pretrained( |
|
model=model, |
|
model_id=model_name |
|
) |
|
|
|
inputs = image_processor(img, return_tensors="pt") |
|
outputs = lora_model(**inputs) |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{Filiot2023.07.21.23292757, |
|
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti}, |
|
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling}, |
|
elocation-id = {2023.07.21.23292757}, |
|
year = {2023}, |
|
doi = {10.1101/2023.07.21.23292757}, |
|
publisher = {Cold Spring Harbor Laboratory Press}, |
|
url = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757}, |
|
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf}, |
|
journal = {medRxiv} |
|
} |
|
``` |