1q2w3er1234's picture
End of training
c1b925a verified
---
library_name: peft
license: bigcode-openrail-m
base_model: bigcode/starcoderbase-1b
tags:
- generated_from_trainer
model-index:
- name: peft-starcoder-lora-a100
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-starcoder-lora-a100
This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9035 | 0.05 | 100 | 1.7793 |
| 0.7702 | 0.1 | 200 | 1.7754 |
| 0.6297 | 0.15 | 300 | 1.8416 |
| 0.5922 | 0.2 | 400 | 1.8849 |
| 0.5098 | 0.25 | 500 | 1.9704 |
| 0.4911 | 0.3 | 600 | 2.0128 |
| 0.4129 | 0.35 | 700 | 2.1029 |
| 0.4079 | 0.4 | 800 | 2.1389 |
| 0.3735 | 0.45 | 900 | 2.2002 |
| 0.3562 | 0.5 | 1000 | 2.2493 |
| 0.3156 | 0.55 | 1100 | 2.2849 |
| 0.3054 | 0.6 | 1200 | 2.3290 |
| 0.293 | 0.65 | 1300 | 2.3672 |
| 0.2732 | 0.7 | 1400 | 2.3749 |
| 0.2779 | 0.75 | 1500 | 2.3940 |
| 0.2567 | 0.8 | 1600 | 2.4096 |
| 0.2781 | 0.85 | 1700 | 2.4200 |
| 0.2556 | 0.9 | 1800 | 2.4289 |
| 0.2647 | 0.95 | 1900 | 2.4303 |
| 0.247 | 1.0 | 2000 | 2.4315 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0