|
--- |
|
base_model: vasista22/whisper-gujarati-small |
|
datasets: |
|
- 1rsh/gujarati-openslr |
|
language: |
|
- gu |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Small Gujarati OpenSLR |
|
results: |
|
|
|
|
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Gujarati OpenSLR |
|
type: 1rsh/gujarati-openslr |
|
args: 'split: train' |
|
metrics: |
|
- type: wer |
|
value: 35.325794291868604 |
|
name: WER |
|
- type: cer |
|
value: 22.3685 |
|
name: CER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Google FLEURS |
|
type: google/fleurs |
|
args: 'config: gu_in; split: test' |
|
metrics: |
|
- type: wer |
|
value: 46.596808306094985 |
|
name: WER |
|
- type: cer |
|
value: 22.69041389733006 |
|
name: CER |
|
- type: nwer |
|
value: 44.01335002085941 |
|
name: Normalized WER |
|
- type: ncer |
|
value: 18.702293460048406 |
|
name: Normalized CER |
|
--- |
|
|
|
# Whisper Small Gujarati OpenSLR |
|
|
|
This model is a fine-tuned version of [vasista22/whisper-gujarati-small](https://huggingface.co/vasista22/whisper-gujarati-small) on the Gujarati OpenSLR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0472 |
|
- Wer: 35.3258 |
|
- Cer: 22.3685 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:| |
|
| 0.0018 | 4.9505 | 1000 | 0.0472 | 35.3258 | 22.3685 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|
|
## Usage |
|
|
|
In order to infer a single audio file using this model, the following code snippet can be used: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import pipeline |
|
|
|
>>> # path to the audio file to be transcribed |
|
>>> audio = "/path/to/audio.format" |
|
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
>>> transcribe = pipeline(task="automatic-speech-recognition", model="1rsh/whisper-small-gu", chunk_length_s=30, device=device) |
|
>>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="gu", task="transcribe") |
|
|
|
>>> print('Transcription: ', transcribe(audio)["text"]) |
|
``` |