Edit model card

Spoof_detection

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7448
  • Wer: 0.1090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
95.9046 0.66 500 992.2993 0.6180
14.0322 1.33 1000 1.8873 0.1090
1.8659 1.99 1500 1.7827 0.1090
1.851 2.65 2000 1.8489 0.1090
1.8218 3.32 2500 1.8943 0.1090
1.8108 3.98 3000 1.9250 0.1090
1.8228 4.64 3500 1.7555 0.1090
1.832 5.31 4000 1.7837 0.1090
1.8403 5.97 4500 1.6644 0.1090
1.8292 6.63 5000 1.6906 0.1090
1.8223 7.29 5500 1.6966 0.1090
1.8007 7.96 6000 1.6951 0.1090
1.7986 8.62 6500 1.7436 0.1090
1.7933 9.28 7000 1.8169 0.1090
1.7861 9.95 7500 1.7209 0.1090
1.7843 10.61 8000 1.9379 0.1090
1.7743 11.27 8500 1.9834 0.1090
1.7721 11.94 9000 1.9279 0.1090
1.7719 12.6 9500 1.8187 0.1090
1.7616 13.26 10000 1.7804 0.1090
1.7638 13.93 10500 1.7884 0.1090
1.7651 14.59 11000 1.7476 0.1090
1.7603 15.25 11500 1.7570 0.1090
1.7543 15.92 12000 1.7356 0.1090
1.7556 16.58 12500 1.7140 0.1090
1.751 17.24 13000 1.7453 0.1090
1.75 17.9 13500 1.7648 0.1090
1.7492 18.57 14000 1.7338 0.1090
1.7484 19.23 14500 1.7093 0.1090
1.7461 19.89 15000 1.7393 0.1090
1.7429 20.56 15500 1.7605 0.1090
1.7446 21.22 16000 1.7782 0.1090
1.7435 21.88 16500 1.6749 0.1090
1.7392 22.55 17000 1.7468 0.1090
1.741 23.21 17500 1.7406 0.1090
1.7394 23.87 18000 1.7787 0.1090
1.739 24.54 18500 1.7969 0.1090
1.7341 25.2 19000 1.7490 0.1090
1.7371 25.86 19500 1.7783 0.1090
1.735 26.53 20000 1.7540 0.1090
1.7353 27.19 20500 1.7735 0.1090
1.7331 27.85 21000 1.7188 0.1090
1.7308 28.51 21500 1.7349 0.1090
1.7341 29.18 22000 1.7531 0.1090
1.7305 29.84 22500 1.7448 0.1090

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu102
  • Datasets 1.16.1
  • Tokenizers 0.12.1
Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.