bart_samsum
This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.6994
- Rouge1: 54.5529
- Rouge2: 30.0179
- Rougel: 45.3837
- Rougelsum: 50.4176
- Gen Len: 28.967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.7327 | 0.9997 | 1841 | 2.7677 | 52.2923 | 27.6237 | 43.1558 | 48.08 | 30.4005 |
2.4597 | 2.0 | 3683 | 2.7286 | 53.4085 | 28.7235 | 44.5737 | 49.3042 | 29.3004 |
2.2042 | 2.9997 | 5524 | 2.7436 | 53.6036 | 28.857 | 44.7337 | 49.2789 | 28.4188 |
2.1096 | 3.9989 | 7364 | 2.7886 | 53.0547 | 28.3597 | 44.0648 | 48.804 | 29.5165 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for 404sau404/bart_samsum
Base model
facebook/bart-large-xsum