nlp_sc_based_on_bert

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2481
  • Accuracy: 0.8333
  • F1: 0.8840

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 459 0.4862 0.7819 0.8616
0.5416 2.0 918 0.5299 0.8480 0.8942
0.3661 3.0 1377 0.6462 0.8431 0.8904
0.2027 4.0 1836 0.7761 0.8431 0.8923
0.1227 5.0 2295 0.9341 0.8554 0.9002
0.0486 6.0 2754 1.0655 0.8382 0.8850
0.029 7.0 3213 1.2886 0.8284 0.8833
0.0281 8.0 3672 1.2164 0.8431 0.8937
0.0109 9.0 4131 1.2515 0.8407 0.8904
0.0049 10.0 4590 1.2481 0.8333 0.8840

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
35
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for 4TB-USTC/nlp_sc_based_on_bert

Finetuned
(3466)
this model