Edit model card

Efficient Conformer v2 for non-streaming ASR

Specification: https://github.com/wenet-e2e/wenet/pull/1636

Aishell-1 Results

  • Feature info:
    • using fbank feature, cmvn, speed perturb, dither
  • Training info:
  • Model info:
    • Model Params: 49,354,651
    • Downsample rate: 1/2 (conv2d2) * 1/4 (efficonformer block)
    • encoder_dim 256, output_size 256, head 8, linear_units 2048
    • num_blocks 12, cnn_module_kernel 15, group_size 3
  • Decoding info:
    • ctc_weight 0.5, reverse_weight 0.3, average_num 20
decoding mode full 18 16
attention decoder 4.87 5.03 5.07
ctc prefix beam search 4.97 5.18 5.20
attention rescoring 4.56 4.75 4.77

Start to Use

Install WeNet follow: https://wenet.org.cn/wenet/install.html#install-for-training

Decode

cd wenet/examples/aishell/s0
dir=exp/wenet_efficient_conformer_aishell_v2/

ctc_weight=0.5
reverse_weight=0.3
decoding_chunk_size=-1
mode="attention_rescoring"

test_dir=$dir/test_${mode}
mkdir -p $test_dir

# Decode
nohup python wenet/bin/recognize.py --gpu 0 \
    --mode $mode \
    --config $dir/train.yaml \
    --data_type "raw" \
    --test_data data/test/data.list \
    --checkpoint $dir/final.pt \
    --beam_size 10 \
    --batch_size 1 \
    --penalty 0.0 \
    --dict $dir/words.txt \
    --ctc_weight $ctc_weight \
    --reverse_weight $reverse_weight \
    --result_file $test_dir/text \
    ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} > logs/decode_aishell.log &

# CER
python tools/compute-cer.py --char=1 --v=1 \
      data/test/text $test_dir/text > $test_dir/cer.txt
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .