bert_model_out

This model is a fine-tuned version of beomi/kcbert-base on the unsmile_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1440
  • Lrap: 0.8764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Lrap
No log 1.0 235 0.1493 0.8533
No log 2.0 470 0.1293 0.8724
0.1737 3.0 705 0.1241 0.8785
0.1737 4.0 940 0.1310 0.8795
0.0754 5.0 1175 0.1354 0.8778
0.0754 6.0 1410 0.1425 0.8739
0.0427 7.0 1645 0.1440 0.8764

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for 888SH/bert_model_out

Base model

beomi/kcbert-base
Finetuned
(152)
this model