Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,40 @@ base_model:
|
|
9 |
library_name: transformers
|
10 |
tags:
|
11 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
|
|
9 |
library_name: transformers
|
10 |
tags:
|
11 |
- transformers
|
12 |
+
---
|
13 |
+
|
14 |
+
# Introduction:
|
15 |
+
|
16 |
+
ElEmperador is an ORPO finetinue derived from the Mistral-7B-v0.1 base model.
|
17 |
+
|
18 |
+
### Inference Script:
|
19 |
+
---
|
20 |
+
def generate_response(model_name, input_text, max_new_tokens=50):
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
24 |
+
|
25 |
+
|
26 |
+
input_ids = tokenizer(input_text, return_tensors='pt').input_ids
|
27 |
+
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
|
31 |
+
|
32 |
+
|
33 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
return generated_text
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
# Set the model name from Hugging Face Hub
|
39 |
+
model_name = "AINovice2005/ElEmperador" # Example model, you can change this to any other model
|
40 |
+
input_text = "Hello, how are you?"
|
41 |
+
|
42 |
+
|
43 |
+
output = generate_response(model_name, input_text)
|
44 |
+
|
45 |
+
|
46 |
+
print(f"Input: {input_text}")
|
47 |
+
print(f"Output: {output}")
|
48 |
---
|