Model Overview
ππ¨πππ₯ πππ¦π:ElEmperador
Model Description:
ElEmperador is an ORPO-based finetune derived from the Mistral-7B-v0.1 base model.
Evals:
BLEU:0.209
Inference Script:
def generate_response(model_name, input_text, max_new_tokens=50):
# Load the tokenizer and model from Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Tokenize the input text
input_ids = tokenizer(input_text, return_tensors='pt').input_ids
# Generate a response using the model
with torch.no_grad():
generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
# Decode the generated tokens into text
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_text
if __name__ == "__main__":
# Set the model name from Hugging Face Hub
model_name = "AINovice2005/ElEmperador"
input_text = "Hello, how are you?"
# Generate and print the model's response
output = generate_response(model_name, input_text)
print(f"Input: {input_text}")
print(f"Output: {output}")
Results
Firstly,ORPO is a viable RLHF algorithm to improve the performance of your models along with SFT finetuning.Secondly, it also helps in aligning the modelβs outputs more closely with human preferences, leading to more user-friendly and acceptable results.
- Downloads last month
- 364
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.