|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnextv2-large-1k-224-finetuned-LungCancer-Classification-LC25000-AH-60-20-20 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: Augmented-Final |
|
split: train |
|
args: Augmented-Final |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9996666666666667 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-large-1k-224-finetuned-LungCancer-Classification-LC25000-AH-60-20-20 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0043 |
|
- Accuracy: 0.9997 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.9 |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.4332 | 1.0 | 281 | 0.3824 | 0.947 | |
|
| 0.1558 | 2.0 | 563 | 0.1292 | 0.9737 | |
|
| 0.1161 | 3.0 | 844 | 0.0556 | 0.9887 | |
|
| 0.2337 | 4.0 | 1126 | 0.0683 | 0.982 | |
|
| 0.1285 | 5.0 | 1407 | 0.0293 | 0.9923 | |
|
| 0.047 | 6.0 | 1689 | 0.0987 | 0.975 | |
|
| 0.0741 | 7.0 | 1970 | 0.0373 | 0.988 | |
|
| 0.153 | 8.0 | 2252 | 0.0043 | 0.9997 | |
|
| 0.0244 | 9.0 | 2533 | 0.0696 | 0.981 | |
|
| 0.0646 | 10.0 | 2815 | 0.0120 | 0.995 | |
|
| 0.0025 | 11.0 | 3096 | 0.0076 | 0.9977 | |
|
| 0.0611 | 11.98 | 3372 | 0.0024 | 0.9997 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|