metadata
license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: >-
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.992469545957918
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-3
This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0191
- Accuracy: 0.9925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2297 | 1.0 | 187 | 0.3401 | 0.9231 |
0.3255 | 2.0 | 374 | 0.1010 | 0.9643 |
0.4962 | 3.0 | 561 | 0.0967 | 0.9608 |
0.181 | 4.0 | 749 | 0.1624 | 0.9296 |
0.2266 | 5.0 | 936 | 0.0975 | 0.9615 |
0.0981 | 6.0 | 1123 | 0.0577 | 0.9783 |
0.0629 | 6.99 | 1309 | 0.0191 | 0.9925 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3