AMfeta99's picture
brain_tumor
b4e1e10 verified
|
raw
history blame
2.54 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-base-oxford-brain-tumor_try_stuff
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: Mahadih534/brain-tumor-dataset
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8076923076923077
          - name: Precision
            type: precision
            value: 0.8513986013986015
          - name: Recall
            type: recall
            value: 0.8076923076923077
          - name: F1
            type: f1
            value: 0.7830374753451677

vit-base-oxford-brain-tumor_try_stuff

This model is a fine-tuned version of google/vit-base-patch16-224 on the Mahadih534/brain-tumor-dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5406
  • Accuracy: 0.8077
  • Precision: 0.8514
  • Recall: 0.8077
  • F1: 0.7830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 20
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6608 1.0 11 0.5499 0.8 0.8308 0.8 0.8039
0.6097 2.0 22 0.4836 0.88 0.8989 0.88 0.8731
0.5882 3.0 33 0.4191 0.88 0.8853 0.88 0.8812
0.5673 4.0 44 0.4871 0.84 0.8561 0.84 0.8427
0.5619 5.0 55 0.4079 0.92 0.92 0.92 0.92

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1