autoevaluator
HF staff
Add evaluation results on the default config and train split of medical_questions_pairs
3111a9b
metadata
language:
- it
tags:
- summarization
datasets:
- ARTeLab/ilpost
metrics:
- rouge
base_model: gsarti/it5-base
model-index:
- name: summarization_ilpost
results:
- task:
type: summarization
name: Summarization
dataset:
name: medical_questions_pairs
type: medical_questions_pairs
config: default
split: train
metrics:
- type: rouge
value: 12.5087
name: ROUGE-1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTk1NzM4NjEyYjlkOWQ3Yzk0NjNiNDYzZjIwNDZkYWFlYzJlNTA4ZThiNjEzYWQzZWVjYzVmNTYyNjlhMjgzOCIsInZlcnNpb24iOjF9.v6mtEtzUqnUfSBwZu-vXDJmuVGvj4IvSgUFjdWy1RX9ShaC0TtNZJ20W4zjrEZ26Xmk7uqC51hK5ya6kx11WDQ
- type: rouge
value: 3.6796
name: ROUGE-2
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWQ4YWRmZGVjZTk5YTdjYzZhNzNkZDBmOTRmMzVmODY4OGU4MjI5OTdmZGQ3MTRjNDBmYTBkMTE0MzQ4ZDQ5YSIsInZlcnNpb24iOjF9.Ux7-ReB2i0MLurwxzzOmIi6dGUCUeZNYXgnGX4f8MTVJBMeMFMRFsG3Im1j0-DnpIxuvXETc8J6eZ5PR_5nIAg
- type: rouge
value: 11.0954
name: ROUGE-L
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjRkZTYyYjRhNTNlMThkZjI3ZmE3MmNlOTFiMmQ0MGRhMTE3ZWM5ODk1OWRkZThiYTFiNDg5MjE2ODVhM2QyNyIsInZlcnNpb24iOjF9.yucLivteb6CxBBMZ1gydBhiWPBzwL2Ga9OS37z0o0tuPSWHjbsZtoVTzrHuJcjH-kwnR_QNA1AWokSf9grs4BQ
- type: rouge
value: 11.5897
name: ROUGE-LSUM
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDI4ZmYxOWQzOTcyNGIyMWM2NGU4MzM0ZWI1MjRkN2ExNzFmNDFlNzI4ZTI4M2NkYzY5MmQ4MDgxZjhjMDExMyIsInZlcnNpb24iOjF9.riA7X5EfOrBirLWMyOYS5UWReNAm1sjrAPihNuW4lx0IzKdafZ3bUJrH1QNojae5p_XP8AyU8yygZ7TQgN2gBw
- type: loss
value: 3.0159499645233154
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzhmYzJlMWYwYTM2OGFlNjQ2YjkxYWI1YzNkOTRjMjI0NGQ2ZTNhYjUzN2RhMDQxMjI1NWUyYjgwNTYzN2RkNiIsInZlcnNpb24iOjF9.I_CHEnSn61amBXNSOqBXSkGL09fvRv700bHyC41vNowaBUNtO5vOabRfhYi0IuPmsEI8eh_IEVrwNpbTgdtlAg
- type: gen_len
value: 18.9961
name: gen_len
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWU5NDBkZDMyNWJjN2NkYWEyNGZjOGY5MDQyOTVmN2I5MTVhMTk0N2I5YjIxZjI4YmY0MmRmZmU3YWIzMGRiYSIsInZlcnNpb24iOjF9.GC80tSpC8-wSuuzGc8wG9iDeSZ6CU1gdczoLiYEFdz-JfCrZa82UGr0EHXTzbaPKjb2Di1MyeH77hygu5BJpCQ
summarization_ilpost
This model is a fine-tuned version of gsarti/it5-base on IlPost dataset for Abstractive Summarization.
It achieves the following results:
- Loss: 1.6020
- Rouge1: 33.7802
- Rouge2: 16.2953
- Rougel: 27.4797
- Rougelsum: 30.2273
- Gen Len: 45.3175
Usage
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost")
model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost")
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3