Addaci's picture
Best model from ByT5-Yiddish-Experiment-11
c33a9d2 verified
---
library_name: transformers
license: apache-2.0
base_model: google/byt5-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: byt5-small-finetuned-yiddish-experiment-11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# byt5-small-finetuned-yiddish-experiment-11
This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1805
- Cer: 0.1974
- Wer: 0.5776
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 600
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 9.199 | 1.8868 | 100 | 10.8497 | 0.2853 | 0.7144 |
| 9.1103 | 3.7736 | 200 | 10.3073 | 0.2701 | 0.6874 |
| 8.5159 | 5.6604 | 300 | 9.1649 | 0.2579 | 0.6603 |
| 7.6411 | 7.5472 | 400 | 7.9065 | 0.2445 | 0.6396 |
| 6.8548 | 9.4340 | 500 | 6.6809 | 0.2340 | 0.6237 |
| 6.1063 | 11.3208 | 600 | 5.4130 | 0.2272 | 0.6142 |
| 4.7529 | 13.2075 | 700 | 4.1840 | 0.2224 | 0.6126 |
| 3.7885 | 15.0943 | 800 | 3.1426 | 0.2183 | 0.6110 |
| 2.9438 | 16.9811 | 900 | 2.1589 | 0.2141 | 0.6038 |
| 2.1457 | 18.8679 | 1000 | 1.4059 | 0.2101 | 0.5951 |
| 1.6163 | 20.7547 | 1100 | 1.2903 | 0.2053 | 0.5863 |
| 1.3877 | 22.6415 | 1200 | 1.2429 | 0.2024 | 0.5855 |
| 1.3156 | 24.5283 | 1300 | 1.2100 | 0.1984 | 0.5784 |
| 1.2623 | 26.4151 | 1400 | 1.1897 | 0.1981 | 0.5776 |
| 1.2381 | 28.3019 | 1500 | 1.1805 | 0.1974 | 0.5776 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 2.14.4
- Tokenizers 0.21.0