Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5043
  • Accuracy: {'accuracy': 0.9479166666666666}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 431 0.2331 {'accuracy': 0.90625}
0.4451 2.0 862 0.3140 {'accuracy': 0.90625}
0.2963 3.0 1293 0.3216 {'accuracy': 0.9322916666666666}
0.25 4.0 1724 0.2690 {'accuracy': 0.9270833333333334}
0.2261 5.0 2155 0.2707 {'accuracy': 0.9479166666666666}
0.1511 6.0 2586 0.2543 {'accuracy': 0.9427083333333334}
0.1401 7.0 3017 0.3120 {'accuracy': 0.9375}
0.1401 8.0 3448 0.2845 {'accuracy': 0.953125}
0.086 9.0 3879 0.4018 {'accuracy': 0.921875}
0.0583 10.0 4310 0.4593 {'accuracy': 0.9427083333333334}
0.0475 11.0 4741 0.4401 {'accuracy': 0.953125}
0.0515 12.0 5172 0.4631 {'accuracy': 0.9479166666666666}
0.0291 13.0 5603 0.4593 {'accuracy': 0.9479166666666666}
0.0319 14.0 6034 0.5292 {'accuracy': 0.9479166666666666}
0.0319 15.0 6465 0.5043 {'accuracy': 0.9479166666666666}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Advince/distilbert-base-uncased-lora-text-classification

Adapter
(198)
this model