output_dir / README.md
Agoyr's picture
End of training
e7d15b5 verified
metadata
library_name: transformers
language:
  - ja
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - custom_dataset
metrics:
  - wer
model-index:
  - name: Whisper Small Ja Custom
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Custom Dataset
          type: custom_dataset
          config: ja
          split: train
          args: 'config: ja, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 88.03418803418803

Whisper Small Ja Custom

This model is a fine-tuned version of openai/whisper-small on the Custom Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4312
  • Wer: 88.0342

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1175 2.7322 1000 0.3352 84.7578
0.0102 5.4645 2000 0.3849 84.3305
0.0019 8.1967 3000 0.4231 87.3219
0.0014 10.9290 4000 0.4312 88.0342

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0