hamsa-meetingsv2.5 / README.md
Ahmed107's picture
End of training
b587fba
metadata
language:
  - ar
license: apache-2.0
base_model: nadsoft/hamsa-v0.1-beta
tags:
  - generated_from_trainer
datasets:
  - nadsoft/nadsoft-meetings-v2
metrics:
  - wer
model-index:
  - name: Hamsa-meetings
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nadsoft/nadsoft-meetings-v2
          type: nadsoft/nadsoft-meetings-v2
        metrics:
          - name: Wer
            type: wer
            value: 43.449519230769226

Hamsa-meetings

This model is a fine-tuned version of nadsoft/hamsa-v0.1-beta on the nadsoft/nadsoft-meetings-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9346
  • Wer Ortho: 43.4495
  • Wer: 43.4495

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.4883 2.91 250 0.6170 40.2644 40.2644
0.1678 5.81 500 0.6893 43.6899 43.6899
0.0749 8.72 750 0.7367 42.0673 42.0673
0.0352 11.63 1000 0.7829 42.6683 42.6683
0.0214 14.53 1250 0.8553 43.9904 43.9904
0.0146 17.44 1500 0.9061 43.3894 43.3894
0.0112 20.35 1750 0.9225 44.2909 44.2909
0.0104 23.26 2000 0.9346 43.4495 43.4495

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0