Built with Axolotl

See axolotl config

axolotl version: 0.6.0

adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: /workspace/axolotl/data/prepared
datasets:
- ds_type: json
  format: custom
  path: Aivesa/dataset_8fc4a6ef-bd04-43fb-917a-b960b40d439b
  type:
    field_input: wiki
    field_instruction: query
    field_output: atom
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Aivesa/275e3437-81b9-4dba-a295-d95efe1f1668
hub_private_repo: true
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/outputs
pad_to_sequence_len: true
push_to_hub: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_safetensors: true
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_accelerate: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8fc4a6ef-bd04-43fb-917a-b960b40d439b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8fc4a6ef-bd04-43fb-917a-b960b40d439b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

275e3437-81b9-4dba-a295-d95efe1f1668

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the Aivesa/dataset_8fc4a6ef-bd04-43fb-917a-b960b40d439b dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
10.3899 0.0014 3 10.3832
10.3768 0.0028 6 10.3831
10.3806 0.0042 9 10.3830

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.0a0+e000cf0ad9.nv24.10
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Aivesa/275e3437-81b9-4dba-a295-d95efe1f1668