metadata
license: cc-by-4.0
datasets:
- CSTR-Edinburgh/vctk
language:
- en
Trained with Matcha-TTS - Github | Paper
How to Infer see Github page
License
You have to follow the cc-by-4.0 vctk license.
Datasets License
- VCTK Dataset license are cc-by-4.0
Tools License
These tools did not effect output license.
- Matcha-TTS - MIT
- ONNX Simplifier - Apache2.0
- onnxruntime - MIT
Converted model Owner(me)
I release my output under MIT License.If you want your license ,convert it by yourself
Onnx File Type
All models are simplify(If you need original,export by yourself)
Vocoder:hifigan_univ_v1(some english speaker avoid robotic)
- vctk_univ_simplify.onnx
- vctk_univ_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow
Vocoder:hifigan_T2_v1(Good for English)
- vctk_t2_simplify.onnx
- vctk_t2_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow
How to Convert
Export Model
see Matcha-TTS ONNX export
python -m matcha.onnx.export matcha_vctk.ckpt vctk_t2.onnx --vocoder-name "hifigan_T2_v1" --vocoder-checkpoint "generator_v1"
simplify model
from onnxsim import simplify
import onnx
import argparse
parser = argparse.ArgumentParser(
description="create simplify onnx"
)
parser.add_argument(
"--input","-i",
type=str,required=True
)
parser.add_argument(
"--output","-o",
type=str
)
args = parser.parse_args()
src_model_path = args.input
if args.output == None:
dst_model_path = src_model_path.replace(".onnx","_simplify.onnx")
else:
dst_model_path = args.output
model = onnx.load(src_model_path)
model_simp, check = simplify(model)
onnx.save(model_simp, dst_model_path)
quantize model
from onnxruntime.quantization import quantize_dynamic, QuantType
import argparse
parser = argparse.ArgumentParser(
description="create quantized onnx"
)
parser.add_argument(
"--input","-i",
type=str,required=True
)
parser.add_argument(
"--output","-o",
type=str
)
args = parser.parse_args()
src_model_path = args.input
if args.output == None:
dst_model_path = src_model_path.replace(".onnx","_q8.onnx")
else:
dst_model_path = args.output
# only QUInt8 works well
quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8)