AlekseyKorshuk
commited on
Commit
·
8b94b74
1
Parent(s):
f4911cd
update model card README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ license: mit
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
@@ -13,15 +13,15 @@ model-index:
|
|
13 |
name: Causal Language Modeling
|
14 |
type: text-generation
|
15 |
dataset:
|
16 |
-
name:
|
17 |
-
type:
|
18 |
config: default
|
19 |
split: train[:5%]
|
20 |
args: default
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# gpt2-jokes
|
31 |
|
32 |
-
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -52,19 +52,38 @@ More information needed
|
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
- learning_rate: 5e-05
|
55 |
-
- train_batch_size:
|
56 |
-
- eval_batch_size:
|
57 |
- seed: 42
|
58 |
- distributed_type: multi-GPU
|
59 |
- num_devices: 4
|
60 |
-
- total_train_batch_size:
|
61 |
-
- total_eval_batch_size:
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- num_epochs: 1.0
|
65 |
|
66 |
### Training results
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
### Framework versions
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- short-jokes
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
|
|
13 |
name: Causal Language Modeling
|
14 |
type: text-generation
|
15 |
dataset:
|
16 |
+
name: short-jokes
|
17 |
+
type: short-jokes
|
18 |
config: default
|
19 |
split: train[:5%]
|
20 |
args: default
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.8795477617316698
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# gpt2-jokes
|
31 |
|
32 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the short-jokes dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6748
|
35 |
+
- Accuracy: 0.8795
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
- seed: 42
|
58 |
- distributed_type: multi-GPU
|
59 |
- num_devices: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- total_eval_batch_size: 128
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- num_epochs: 1.0
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 0.06 | 100 | 0.7285 | 0.8732 |
|
71 |
+
| No log | 0.12 | 200 | 0.7141 | 0.8747 |
|
72 |
+
| No log | 0.17 | 300 | 0.7056 | 0.8757 |
|
73 |
+
| No log | 0.23 | 400 | 0.6992 | 0.8764 |
|
74 |
+
| 0.7907 | 0.29 | 500 | 0.6942 | 0.8771 |
|
75 |
+
| 0.7907 | 0.35 | 600 | 0.6906 | 0.8777 |
|
76 |
+
| 0.7907 | 0.41 | 700 | 0.6873 | 0.8779 |
|
77 |
+
| 0.7907 | 0.47 | 800 | 0.6848 | 0.8782 |
|
78 |
+
| 0.7907 | 0.52 | 900 | 0.6830 | 0.8786 |
|
79 |
+
| 0.7105 | 0.58 | 1000 | 0.6809 | 0.8788 |
|
80 |
+
| 0.7105 | 0.64 | 1100 | 0.6794 | 0.8790 |
|
81 |
+
| 0.7105 | 0.7 | 1200 | 0.6780 | 0.8792 |
|
82 |
+
| 0.7105 | 0.76 | 1300 | 0.6770 | 0.8793 |
|
83 |
+
| 0.7105 | 0.81 | 1400 | 0.6760 | 0.8794 |
|
84 |
+
| 0.7034 | 0.87 | 1500 | 0.6755 | 0.8794 |
|
85 |
+
| 0.7034 | 0.93 | 1600 | 0.6750 | 0.8795 |
|
86 |
+
| 0.7034 | 0.99 | 1700 | 0.6748 | 0.8795 |
|
87 |
|
88 |
|
89 |
### Framework versions
|