AlekseyKorshuk commited on
Commit
8b94b74
·
1 Parent(s): f4911cd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -11
README.md CHANGED
@@ -3,7 +3,7 @@ license: mit
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
- - Fraser/short-jokes
7
  metrics:
8
  - accuracy
9
  model-index:
@@ -13,15 +13,15 @@ model-index:
13
  name: Causal Language Modeling
14
  type: text-generation
15
  dataset:
16
- name: Fraser/short-jokes
17
- type: Fraser/short-jokes
18
  config: default
19
  split: train[:5%]
20
  args: default
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.8760281609284458
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  # gpt2-jokes
31
 
32
- This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the Fraser/short-jokes dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.6851
35
- - Accuracy: 0.8760
36
 
37
  ## Model description
38
 
@@ -52,19 +52,38 @@ More information needed
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 5e-05
55
- - train_batch_size: 8
56
- - eval_batch_size: 8
57
  - seed: 42
58
  - distributed_type: multi-GPU
59
  - num_devices: 4
60
- - total_train_batch_size: 32
61
- - total_eval_batch_size: 32
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - num_epochs: 1.0
65
 
66
  ### Training results
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
 
70
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
+ - short-jokes
7
  metrics:
8
  - accuracy
9
  model-index:
 
13
  name: Causal Language Modeling
14
  type: text-generation
15
  dataset:
16
+ name: short-jokes
17
+ type: short-jokes
18
  config: default
19
  split: train[:5%]
20
  args: default
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.8795477617316698
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  # gpt2-jokes
31
 
32
+ This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the short-jokes dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.6748
35
+ - Accuracy: 0.8795
36
 
37
  ## Model description
38
 
 
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
  - seed: 42
58
  - distributed_type: multi-GPU
59
  - num_devices: 4
60
+ - total_train_batch_size: 128
61
+ - total_eval_batch_size: 128
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - num_epochs: 1.0
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 0.06 | 100 | 0.7285 | 0.8732 |
71
+ | No log | 0.12 | 200 | 0.7141 | 0.8747 |
72
+ | No log | 0.17 | 300 | 0.7056 | 0.8757 |
73
+ | No log | 0.23 | 400 | 0.6992 | 0.8764 |
74
+ | 0.7907 | 0.29 | 500 | 0.6942 | 0.8771 |
75
+ | 0.7907 | 0.35 | 600 | 0.6906 | 0.8777 |
76
+ | 0.7907 | 0.41 | 700 | 0.6873 | 0.8779 |
77
+ | 0.7907 | 0.47 | 800 | 0.6848 | 0.8782 |
78
+ | 0.7907 | 0.52 | 900 | 0.6830 | 0.8786 |
79
+ | 0.7105 | 0.58 | 1000 | 0.6809 | 0.8788 |
80
+ | 0.7105 | 0.64 | 1100 | 0.6794 | 0.8790 |
81
+ | 0.7105 | 0.7 | 1200 | 0.6780 | 0.8792 |
82
+ | 0.7105 | 0.76 | 1300 | 0.6770 | 0.8793 |
83
+ | 0.7105 | 0.81 | 1400 | 0.6760 | 0.8794 |
84
+ | 0.7034 | 0.87 | 1500 | 0.6755 | 0.8794 |
85
+ | 0.7034 | 0.93 | 1600 | 0.6750 | 0.8795 |
86
+ | 0.7034 | 0.99 | 1700 | 0.6748 | 0.8795 |
87
 
88
 
89
  ### Framework versions