gpt2-jokes

This model is a fine-tuned version of gpt2 on the Fraser/short-jokes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6748
  • Accuracy: 0.8796

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.06 100 0.7285 0.8732
No log 0.12 200 0.7141 0.8747
No log 0.17 300 0.7056 0.8757
No log 0.23 400 0.6992 0.8764
0.7907 0.29 500 0.6942 0.8771
0.7907 0.35 600 0.6906 0.8777
0.7907 0.41 700 0.6873 0.8779
0.7907 0.47 800 0.6848 0.8782
0.7907 0.52 900 0.6830 0.8786
0.7105 0.58 1000 0.6809 0.8788
0.7105 0.64 1100 0.6794 0.8790
0.7105 0.7 1200 0.6780 0.8792
0.7105 0.76 1300 0.6770 0.8793
0.7105 0.81 1400 0.6760 0.8794
0.7034 0.87 1500 0.6755 0.8794
0.7034 0.93 1600 0.6750 0.8795
0.7034 0.99 1700 0.6748 0.8795

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0-rc1
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
128
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AlekseyKorshuk/gpt2-jokes

Finetunes
1 model

Dataset used to train AlekseyKorshuk/gpt2-jokes

Evaluation results