|
--- |
|
base_model: |
|
- mistralai/Mistral-Nemo-Instruct-2407 |
|
datasets: |
|
- Vikhrmodels/GrandMaster-PRO-MAX |
|
- Vikhrmodels/Grounded-RAG-RU-v2 |
|
language: |
|
- en |
|
- ru |
|
license: apache-2.0 |
|
tags: |
|
- autoquant |
|
- gguf |
|
--- |
|
|
|
## Vikhr-Nemo-12B-Instruct-R-21-09-24 |
|
|
|
### Описание |
|
|
|
**Vikhr-Nemo** - это наша флагманская унимодальная LLM (Large Language Model) представляющая из себя улучшенную версию [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) командой **VikhrModels**, адаптированную преимущественно для русского и английского языков. Для ее обучения мы использовали несколько этапов включающих в себя **SFT** и **SMPO** - нашу собственную вариацию DPO, подробнее читайте в секции *"Как эта модель создавалась"*. |
|
|
|
Модель оптимизированна для различных вариантов использования, включая ризонинг, суммаризацию, код, roleplay, поддержание диалога. Vikhr-Nemo обладает возможностью многоязычной генерации, и высокопроизводительными возможностями RAG. Модель иммет лучшие оценки среди прочих на наших инструктивных и RAG бенчарках и, поэтому, мы верим, что в некоторых задачах (например, RAG) может быть не хуже gpt-4o-mini от OpenAI. |
|
|
|
Весь использованный код для обучения доступен в нашем репозитории [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub, а основные датасеты доступны в нашем [профиле на HF](https://huggingface.co/Vikhrmodels). |
|
|
|
### Особенности |
|
1. Высокое качество генераций на русском и английском языках, а также некоторых других языках, благодаря датасету [Grandmaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) и исходной модели |
|
2. Поддержка системных промптов для регулриования стиля ответов |
|
3. Поддержка до 128k токенов контекста благодаря исходной модели |
|
4. Grounded RAG режим - модель имеет специальную роль documents и специальный режим работы для поиска идентификаторов релевантных вопросу пользователя документов и использования их для ответа на вопрос, вдохновлено аналогичной способностью модели Command-R |
|
|
|
### Метрики и оценка качества |
|
|
|
Модель оценивалась на нашем русскоязычном open-source SbS бенчмарке [ru-arena-general](https://github.com/VikhrModels/ru_llm_arena) (50 вопросов по 10 топикам), где судьей выступает gpt-4-1106-preview и [бенчмарке](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing) для RAG на основе тестового сета [Grounded-RAG-v2](https://huggingface.co/datasets/Vikhrmodels/Grounded-RAG-RU-v2), где судей выступа gpt-4o. |
|
|
|
#### Результаты на Ru-Arena-General |
|
|
|
В качестве референсых отвеов, с которыми сравниваются модели выступают ответы от gpt-3.5-turbo-0125, поэтому она имеет винрейт 50%. |
|
|
|
Здесь приведена лишь часть лидерборда, подробнее смотрите в репозитории бенчмарка. |
|
|
|
| Model Name | Winrate | 95% CI | Average # Tokens | |
|
|--------------------------------------------------|--------|--------------------|------------------| |
|
| gpt-4-1106-preview | 90.9 | (-1.3, 1.0) | 541 | |
|
| gpt-4o-mini | 83.9 | (-1.8, 1.1) | 448 | |
|
| **vikhr-nemo-12b-instruct-r-21-09-24** | **79.8** | (-2.2, 1.9) | **627** | |
|
| gemma-2-9b-it-sppo-iter3 | 73.6 | (-1.6, 2.2) | 509 | |
|
| gemma-2-9b-it | 69.2 | (-2.5, 1.9) | 459 | |
|
| t-lite-instruct-0.1 | 64.7 | (-2.1, 1.7) | 810 | |
|
| vikhr-llama3.1-8b-instruct-r-21-09-24 | 63.4 | (-2.1, 2.5) | 618 | |
|
| suzume-llama-3-8B-multilingual-orpo-borda-half | 57.1 | (-1.9, 2.2) | 682 | |
|
| mistral-nemo-instruct-2407 | 50.5 | (-2.7, 2.6) | 403 | |
|
| gpt-3.5-turbo-0125 | 50.0 | (0.0, 0.0) | 220 | |
|
| c4ai-command-r-v01 | 49.0 | (-1.7, 2.2) | 529 | |
|
| meta-llama-3.1-8b-instruct | 43.1 | (-2.8, 2.3) | 628 | |
|
|
|
#### Результаты на бенчмарке RAG |
|
|
|
Общий размер тестового сета - 200 примеров, 100 для in_domain вопросов и 100 для out_of_domain. |
|
|
|
Тут для оценки качества модель-судья gpt-4o была проинструктирована учитывать релеватность и фактологичкскую полноту ответов исходя из документов и реферсного ответа от gpt-4-1106-preview. |
|
|
|
Подробности промптов и оценок смотрите в коде бенчмарка на [коллабе](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing) |
|
|
|
in_domain - вопросы которые связаны с содержанием предоставленных документов в той или иной степени \ |
|
out_of_domain - вопросы которые специально никак не связаны с содержанием предоставленных документов |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th rowspan="2">question_type</th> |
|
<th colspan="3">gpt-4o</th> |
|
</tr> |
|
<tr> |
|
<th>judge_correct_percent</th> |
|
<th>avg_answer_match_rougeL</th> |
|
<th>avg_abs_indexes_diff</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>in_domain</td> |
|
<td>73%</td> |
|
<td>0.34</td> |
|
<td>NaN</td> |
|
</tr> |
|
<tr> |
|
<td>out_of_domain</td> |
|
<td>81%</td> |
|
<td>0.20</td> |
|
<td>NaN</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th style="visibility: hidden;" rowspan="2">question_type</th> |
|
<th colspan="3">Vikhr-Nemo-12B-Instruct-R-21-09-24</th> |
|
</tr> |
|
<tr> |
|
<th style="visibility: hidden;">judge_correct_percent</th> |
|
<th style="visibility: hidden;">avg_answer_match_rougeL</th> |
|
<th style="visibility: hidden;">avg_abs_indexes_diff</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>in_domain</td> |
|
<td>68%</td> |
|
<td>0.41</td> |
|
<td>0</td> |
|
</tr> |
|
<tr> |
|
<td>out_of_domain</td> |
|
<td>92%</td> |
|
<td>0.52</td> |
|
<td>0</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th style="visibility: hidden;" rowspan="2">question_type</th> |
|
<th colspan="3">gpt-4o-mini</th> |
|
</tr> |
|
<tr> |
|
<th style="visibility: hidden;">judge_correct_percent</th> |
|
<th style="visibility: hidden;">avg_answer_match_rougeL</th> |
|
<th style="visibility: hidden;">avg_abs_indexes_diff</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>in_domain</td> |
|
<td>65%</td> |
|
<td>0.33</td> |
|
<td>NaN</td> |
|
</tr> |
|
<tr> |
|
<td>out_of_domain</td> |
|
<td>73%</td> |
|
<td>0.18</td> |
|
<td>NaN</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th style="visibility: hidden;" rowspan="2">question_type</th> |
|
<th colspan="3">gpt-3.5-turbo-0125 </th> |
|
</tr> |
|
<tr> |
|
<th style="visibility: hidden;">judge_correct_percent</th> |
|
<th style="visibility: hidden;">avg_answer_match_rougeL</th> |
|
<th style="visibility: hidden;">avg_abs_indexes_diff</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>in_domain</td> |
|
<td>49%</td> |
|
<td>0.28</td> |
|
<td>NaN</td> |
|
</tr> |
|
<tr> |
|
<td>out_of_domain</td> |
|
<td>76%</td> |
|
<td>0.20</td> |
|
<td>NaN</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
### Как эта модель создавалась |
|
|
|
#### Инструктивная SFT часть |
|
|
|
Для SFT этапа обучения модели мы подготовили большой (150к инструкций) инструктивный синтетический датасет [Vikhrmodels/GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX). Его особенностью является встроеный CoT (Chain-Of-Thought), для сбора которого мы использовали модифицированный промет для gpt-4-turbo, подробности в карточке датасета. |
|
|
|
Кроме того, для того чтобы сделать RAG Grounding, мы подготовили другой синтетический датасет - [Vikhrmodels/Grounded-RAG-RU-v2](https://huggingface.co/datasets/Vikhrmodels/Grounded-RAG-RU-v2) (50k диалогов), его пайплайн сборки достаточно сложный для короткого описания и полробнее об этом вы можете прочитать в его карточке. |
|
|
|
#### Этап алайнмента с SMPO |
|
|
|
Для дальнейшего улучшения качества ответов мы использовали следущий пайплайн: |
|
1) Обучили кастомную Reward модель (она пока не будет выкладываться в открытый доступ) |
|
2) Дедуплицировали и отфилтровали используя RM модель оригинальный датасет Vikhrmodels/GrandMaster-PRO-MAX, получив порядка 10к самых высококачественных и разнообразных диалогов. |
|
3) Сделали Rejection Sampling с SFT чекпоинтом используя полученный датасет и Reward модель. (Генерировали 7 гипотез и брали только 2 самые худшие как rejected) |
|
4) Дообучили SFT чекпоинт с помощью нашего метода SMPO используя полученный датасет из этапа 3. SMPO был спроектирован и выбран как метод для повышения стабильности тренировки преференсов в условиях Rejection Samping и достижения нужного margin. |
|
|
|
Реализацию SMPO, rejection sampling и тд можно найти в нашей библиотеке [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub |
|
|
|
### Как работать с RAG |
|
|
|
Роль documents представляет из себя список словарей с описанием контента документов, с примнением `json.dumps(array, ensure_ascii=False)` (см. пример ниже). \ |
|
Контент документов может быть представлен в **3** различных форматах: **Markdown**, **HTML**, **Plain Text**. Контент каждого документа - может быть чанком текста длиной до 4к символов. |
|
|
|
```json |
|
[ |
|
{ |
|
"doc_id": (0..5), |
|
"title": "(null or str)", |
|
"content": "(html or markdown or plain text)" |
|
} |
|
] |
|
``` |
|
|
|
#### Пример правильного использования с OpenAI-like API |
|
|
|
Запуск vLLM сервера: `vllm serve --dtype half --max-model-len 32000 -tp 1 Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24 --api-key token-abc123` |
|
|
|
```python |
|
GROUNDED_SYSTEM_PROMPT = "Your task is to answer the user's questions using only the information from the provided documents. Give two answers to each question: one with a list of relevant document identifiers and the second with the answer to the question itself, using documents with these identifiers." |
|
|
|
documents = [ |
|
{ |
|
"doc_id": 0, |
|
"title": "Глобальное потепление: ледники", |
|
"content": "За последние 50 лет объем ледников в мире уменьшился на 30%" |
|
}, |
|
{ |
|
"doc_id": 1, |
|
"title": "Глобальное потепление: Уровень моря", |
|
"content": "Уровень мирового океана повысился на 20 см с 1880 года и продолжает расти на 3,3 мм в год" |
|
} |
|
] |
|
sample_history = [ |
|
{'role': 'system', 'content': GROUNDED_SYSTEM_PROMPT}, |
|
{'role': 'documents', 'content': json.dumps(documents, ensure_ascii=False)}, |
|
{'role': 'user', 'content': 'Глоабльное потепление'} |
|
] |
|
relevant_indexes = llm_client.chat.completions.create( |
|
model=llm_model, |
|
messages=sample_history, |
|
temperature=0.0, |
|
max_tokens=2048 |
|
).choices[0].message.content |
|
|
|
print('Using documents: ' + relevant_indexes + '\n----') |
|
final_answer = llm_client.chat.completions.create( |
|
model=llm_model, |
|
messages=sample_history + [{'role': 'assistant', 'content': relevant_indexes}], |
|
temperature=0.3, |
|
max_tokens=2048 |
|
).choices[0].message.content |
|
|
|
print(final_answer) |
|
``` |
|
|
|
Ответ после выполнения кода будет выглядеть примерно так: |
|
|
|
Using documents: {"relevant_doc_ids": [0, 1]} |
|
---- |
|
|
|
Глобальное потепление – это долгосрочное повышение средней температуры атмосферы и океанов Земли. Это явление имеет множество последствий для нашей планеты, и среди них можно выделить два ключевых аспекта, основанных на доступных мне данных: |
|
|
|
1. **Уменьшение объема ледников**: За последние 50 лет наблюдается значительное сокращение объема ледников по всему миру. Согласно данным, объем ледников уменьшился на 30%. Это может быть связано с таянием ледников из-за повышения температур, что является одним из признаков глобального потепления. |
|
|
|
2. **Повышение уровня моря**: Уровень мирового океана также увеличивается, что связано с таянием ледников и ледяных покровов, а также с расширением воды при повышении температуры. С 1880 года уровень моря повысился на 20 сантиметров, и этот процесс продолжается, с ежегодным увеличением на 3,3 миллиметра. |
|
|
|
Эти изменения имеют серьезные последствия для экосистем, климата и человеческого общества. Таяние ледников приводит к повышению уровня моря, что может привести к затоплению прибрежных территорий и островов, а также к изменению водных ресурсов и климатических паттернов. |
|
|
|
Используя первый ответ модели `relevant_indexes` (JSON), можно понять нашла ли модель информацию в документах или нет, она обучена возврашать пустой массив если ее нет и в таком случае она будет отвечать, что не смогла найти информацию в базе знаний (при генерации второго ответа). |
|
|
|
### Нюансы и ограничения |
|
- Модель имеет **низкий уровень безопасности ответов** и нацелена на правильное и полное выполенние инстуркций, имейте это ввиду при использовании. Частично это исправляется системными промптами и дополнительными указаниями о важности безопасности в промпте пользователя. |
|
- Системные промпты не предназначены для описание персонажей, используйте их только для спецификации стиля ответа (вроде "answer only in json format"). Кроме того они должны быть **на английском**, так как так было в датасете, здесь от английского не зависит язык ответа. |
|
- RAG режим **требует обязательного** наличия системного промпта `GROUNDED_SYSTEM_PROMPT` описаного в секции *Как работать с RAG*. Так же иногда модель может добавлять общую информацию из своих знаний в ответ к той, что есть в документах. |
|
|
|
### Авторы |
|
- Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), Vikhr Team |
|
- Konstantin Korolev, Vikhr Team |
|
- Aleksandr Nikolich, Vikhr Team |
|
|