|
from typing import Optional, Tuple, Union |
|
import torch |
|
from torch import nn |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers import Wav2Vec2BertModel, Wav2Vec2BertConfig, Wav2Vec2BertPreTrainedModel |
|
from transformers.models.mllama.configuration_mllama import MllamaTextConfig |
|
|
|
|
|
class Llama3Embedding(Wav2Vec2BertPreTrainedModel): |
|
base_model_prefix = "audio_model" |
|
def __init__(self, config: Wav2Vec2BertConfig, text_config: MllamaTextConfig): |
|
super().__init__(config) |
|
assert config.add_adapter is True, f'{type(self).__name__} requires add adapter to be true.' |
|
assert config.output_hidden_size == text_config.hidden_size |
|
self.text_embeddings = nn.Embedding(text_config.vocab_size, text_config.hidden_size, text_config.pad_token_id) |
|
self.audio_embedding = Wav2Vec2BertModel(config) |
|
assert self.text_embeddings.weight.shape[-1] == text_config.hidden_size |
|
self.start_of_audio = nn.Parameter(data=torch.zeros((1, config.output_hidden_size)), requires_grad=True) |
|
self.end_of_audio = nn.Parameter(data=torch.zeros((1, config.output_hidden_size)), requires_grad=True) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
audio_features: Optional[torch.Tensor] = None, |
|
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: |
|
input_embeddings = self.text_embeddings(torch.clamp(input_ids, min=0)) |
|
if audio_features is None: |
|
return input_embeddings |
|
bs, max_num_img, l, d = audio_features.shape |
|
audio_embeddings = self.audio_embedding(input_features=audio_features.view((bs*max_num_img, l, d)))['last_hidden_state'] |
|
audio_embeddings = audio_embeddings.view((bs, max_num_img, -1, self.start_of_audio.shape[-1])) |
|
|
|
for i in range(bs): |
|
for j in range(max_num_img): |
|
audio_id = -1 - j |
|
if torch.any(input_ids[i] == audio_id): |
|
positions = torch.nonzero(input_ids[i] == audio_id, as_tuple=True) |
|
seq_len = input_embeddings[i][positions].shape[0] - 2 |
|
input_embeddings[i] = input_embeddings[i].index_put(positions, torch.concat([self.start_of_audio, audio_embeddings[i, j, :seq_len, :], self.end_of_audio]), accumulate=False) |
|
return input_embeddings |
|
|