AlexWortega's picture
Add new SentenceTransformer model
6dc336b verified
metadata
base_model: Qwen/Qwen2.5-0.5B-Instruct
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1077240
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: When was the frigate the USS Alliance built?
    sentences:
      - >-
        Middle Stone Age

        The Middle Stone Age (or MSA) was a period of African prehistory between
        the Early Stone Age and the Later Stone Age. It is generally considered
        to have begun around 280,000 years ago and ended around 50–25,000 years
        ago.[1] The beginnings of particular MSA stone tools have their origins
        as far back as 550–500,000 years ago and as such some researchers
        consider this to be the beginnings of the MSA.[2] The MSA is often
        mistakenly understood to be synonymous with the Middle Paleolithic of
        Europe, especially due to their roughly contemporaneous time span,
        however, the Middle Paleolithic of Europe represents an entirely
        different hominin population, Homo neanderthalensis, than the MSA of
        Africa, which did not have Neanderthal populations. Additionally,
        current archaeological research in Africa has yielded much evidence to
        suggest that modern human behavior and cognition was beginning to
        develop much earlier in Africa during the MSA than it was in Europe
        during the Middle Paleolithic.[3] The MSA is associated with both
        anatomically modern humans (Homo sapiens) as well as archaic Homo
        sapiens, sometimes referred to as Homo helmei. Early physical evidence
        comes from the Gademotta Formation in Ethiopia, the Kapthurin Formation
        in Kenya and Kathu Pan in South Africa.[2]
      - >-
        USS Alliance (1778)

        Originally named Hancock, she was laid down in 1777 on the Merrimack
        River at Amesbury, Massachusetts, by the partners and cousins, William
        and James K. Hackett, launched on 28 April 1778, and renamed Alliance on
        29 May 1778 by resolution of the Continental Congress. Her first
        commanding officer was Capt. Pierre Landais, a former officer of the
        French Navy who had come to the New World hoping to become a naval
        counterpart of Lafayette. The frigate's first captain was widely
        accepted as such in America. Massachusetts made him an honorary citizen
        and the Continental Congress gave him command of Alliance, thought to be
        the finest warship built to that date on the western side of the
        Atlantic.
      - >-
        USS Frigate Bird (AMS-191)

        The second ship in the Navy to be named "Frigate Bird", she was laid
        down 20 July 1953, as AMS-191; launched 24 October 1953, by Quincy Adams
        Yacht Yard, Inc., Quincy, Massachusetts; sponsored by Mrs. Matthew
        Gushing; and commissioned 13 January 1955, Lieutenant (jg) George B.
        Shick, Jr., in command. She was reclassified MSC-191 on 7 February 1955.
  - source_sentence: How many bananas do Americans consume each year?
    sentences:
      - >-
        Dust Bowl

        The Dust Bowl was a period of severe dust storms that greatly damaged
        the ecology and agriculture of the American and Canadian prairies during
        the 1930s; severe drought and a failure to apply dryland farming methods
        to prevent the aeolian processes (wind erosion) caused the
        phenomenon.[1][2] The drought came in three waves, 1934, 1936, and
        1939–1940, but some regions of the high plains experienced drought
        conditions for as many as eight years.[3] With insufficient
        understanding of the ecology of the plains, farmers had conducted
        extensive deep plowing of the virgin topsoil of the Great Plains during
        the previous decade; this had displaced the native, deep-rooted grasses
        that normally trapped soil and moisture even during periods of drought
        and high winds. The rapid mechanization of farm equipment, especially
        small gasoline tractors, and widespread use of the combine harvester
        contributed to farmers' decisions to convert arid grassland (much of
        which received no more than 10inches (~250mm) of precipitation per year)
        to cultivated cropland.[4]
      - >-
        Banana production in the United States

        Commercial banana production in the United States is relatively limited
        in scale and economic impact. While Americans eat 26 pounds (12kg) of
        bananas per person per year, the vast majority of the fruit is imported
        from other countries, chiefly Central and South America, where the US
        has previously occupied areas containing banana plantations, and
        controlled the importation of bananas via various fruit companies, such
        as Dole and Chiquita. [1]
      - >-
        Spinach in the United States

        Per capita spinach consumption is greatest in the Northeast and Western
        US. About 80% of fresh-market spinach is purchased at retail and
        consumed at home, while 91% of processed spinach is consumed at home.
        Per capita spinach use is strongest among Asians, highest among women 40
        and older, and weakest among teenage girls.
  - source_sentence: Which rapper has the most Grammy wins?
    sentences:
      - >-
        Rhineland

        The Rhineland (German: Rheinland, French: Rhénanie, Latinised name:
        Rhenania) is the name used for a loosely defined area of Western Germany
        along the Rhine, chiefly its middle section.
      - |-
        Grammy Award for Best Rap Album
        6 wins Eminem 4 wins Kanye West 2 wins Outkast Kendrick Lamar
      - >-
        Latin Grammy Award records

        René Pérez Joglar "Residente" and Eduardo Cabra "Visitante" with 24
        awards, have won more than any other male artist.
  - source_sentence: Is Iodine radioactive?
    sentences:
      - >-
        Double-decker bus

        With the exception of coaches, double-decker buses are uncommon in the
        United States. Many private operators, such as Megabus, run by Coach
        USA, employs double-decker buses on its busier intercity routes.
      - >-
        Iodine-123

        I is the most suitable isotope of iodine for the diagnostic study of
        thyroid diseases. The half-life of approximately 13.13 hours is ideal
        for the 24-hour iodine uptake test and I has other advantages for
        diagnostic imaging thyroid tissue and thyroid cancer metastasis. The
        energy of the photon, 159 keV, is ideal for the NaI (sodium iodide)
        crystal detector of current gamma cameras and also for the pinhole
        collimators. It has much greater photon flux than I. It gives
        approximately 20 times the counting rate of I for the same administered
        dose. The radiation burden to the thyroid is far less (1%) than that of
        I. Moreover, scanning a thyroid remnant or metastasis with I does not
        cause "stunning" of the tissue (with loss of uptake), because of the low
        radiation burden of this isotope. (For the same reasons, I is never used
        for thyroid cancer or Graves disease "treatment", and this role is
        reserved for I.)
      - >-
        Iodine-131

        Iodine-131 (131I) is an important radioisotope of iodine discovered by
        Glenn Seaborg and John Livingood in 1938 at the University of
        California, Berkeley.[1] It has a radioactive decay half-life of about
        eight days. It is associated with nuclear energy, medical diagnostic and
        treatment procedures, and natural gas production. It also plays a major
        role as a radioactive isotope present in nuclear fission products, and
        was a significant contributor to the health hazards from open-air atomic
        bomb testing in the 1950s, and from the Chernobyl disaster, as well as
        being a large fraction of the contamination hazard in the first weeks in
        the Fukushima nuclear crisis. This is because I-131 is a major fission
        product of uranium and plutonium, comprising nearly 3% of the total
        products of fission (by weight). See fission product yield for a
        comparison with other radioactive fission products. I-131 is also a
        major fission product of uranium-233, produced from thorium.
  - source_sentence: Is a birth certificate a form of ID?
    sentences:
      - >-
        Identity documents in the United States

        The birth certificate is the initial identification document issued to
        parents shortly after the birth of their child. The birth certificate is
        typically issued by local governments, usually the city or county where
        a child is born. It is an important record, often called a "feeder
        document," because it establishes U.S. citizenship through birthright
        citizenship, which is then used to obtain, or is the basis for, all
        other identity documents.[2] By itself, the birth certificate is usually
        only considered proof of citizenship but not proof of identity, since it
        is issued without a photograph at birth, containing no identifying
        features. A birth certificate is normally produced along with proof of
        identity, such as a driver's license or the testimony of a third party
        (such as a parent), to establish identity or entitlement to a service.
      - >-
        Identity document

        In Canada, different forms of identification documentation are used, but
        there is no de jure national identity card. The Canadian passport is
        issued by the federal (national) government, and the provinces and
        territories issue various documents which can be used for identification
        purposes. The most commonly used forms of identification within Canada
        are the health card and driver's licence issued by provincial and
        territorial governments. The widespread usage of these two documents for
        identification purposes has made them de facto identity cards.
      - >-
        International Ladies' Garment Workers' Union

        The ILGWU was founded on June 3, 1900[2] in New York City by seven local
        unions, with a few thousand members between them. The union grew rapidly
        in the next few years but began to stagnate as the conservative
        leadership favored the interests of skilled workers, such as cutters.
        This did not sit well with the majority of immigrant workers,
        particularly Jewish workers with a background in Bundist activities in
        Tsarist Russia, or with Polish and Italian workers, many of whom had
        strong socialist and anarchist leanings.
model-index:
  - name: SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.18
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.28
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.32
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07200000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.052000000000000005
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.07
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12833333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.145
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.19333333333333333
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.16942887258019743
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.24757142857142853
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1355707100998398
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: cosine_accuracy@1
            value: 0.6
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.72
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.82
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.88
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.4159999999999999
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.34
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05876239296513622
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12033972099857915
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1722048755781874
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.23956661282775613
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.43285369033010385
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6865000000000001
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.26928358503732847
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.28
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.56
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.66
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.82
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.28
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.18666666666666668
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.136
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08599999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.52
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.63
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.79
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5142272491063538
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4404126984126984
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4252817429020436
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: cosine_accuracy@1
            value: 0.18
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.28
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.4
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.096
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.062
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.0968888888888889
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.1971111111111111
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.274968253968254
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.3351904761904762
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.23653831229880148
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2642460317460318
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.19230802555548754
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: cosine_accuracy@1
            value: 0.46
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.56
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.68
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.46
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.23333333333333336
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14800000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08999999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.23
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.35
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.37
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.45
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4053306177663136
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.512126984126984
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.34910258985509013
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: cosine_accuracy@1
            value: 0.22
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.34
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.34
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.44
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.22
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.068
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.044000000000000004
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.22
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.34
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.34
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.44
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3192297885891097
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2824126984126984
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2997920687164519
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: cosine_accuracy@1
            value: 0.32
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.42
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.46
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.52
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.32
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.24
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.18
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.012493999137489852
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.03666681098754983
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.05620504095265686
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.06687360120479266
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.22113733731375582
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3847142857142857
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08151129221772184
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: cosine_accuracy@1
            value: 0.28
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.58
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.28
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.13333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10000000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05800000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.27
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.37
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.47
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.53
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.397781398000215
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3704682539682539
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.36349470659883915
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.84
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.92
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.92
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.98
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.84
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.236
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.128
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7406666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8686666666666667
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8859999999999999
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.956
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8890148621063009
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8828571428571428
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8629278499278499
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: cosine_accuracy@1
            value: 0.26
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.38
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.48
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.62
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14800000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.118
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.053000000000000005
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.09300000000000001
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.15
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.24066666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21606068741193518
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.35269047619047617
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.15911734324501478
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: cosine_accuracy@1
            value: 0.06
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.42
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.52
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.68
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.13999999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10400000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.068
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.06
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.42
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.52
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.68
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.37083936956670244
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2719126984126984
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.28287447040897273
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: cosine_accuracy@1
            value: 0.26
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.38
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10400000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.066
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.235
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.355
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.465
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.58
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.39672106927390305
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.35040476190476183
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3458399624509464
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: cosine_accuracy@1
            value: 0.4489795918367347
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7142857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7959183673469388
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9795918367346939
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4489795918367347
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3945578231292517
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.3673469387755102
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.3346938775510204
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.0346506610646935
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.09241187721057745
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.13780926782570618
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.23921204048524203
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.37383535385863614
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6103984450923227
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3108247074769811
            name: Cosine Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: cosine_accuracy@1
            value: 0.33761381475667196
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.49032967032967034
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5627629513343799
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6676609105180534
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.33761381475667196
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2139403453689168
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17194976452119312
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.12513029827315542
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.18011250836329812
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.29934842463906286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3551682644865234
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.441603286977559
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3802306621694099
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.43513199272382946
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3136868503455821
            name: Cosine Map@100

SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct

This is a sentence-transformers model finetuned from Qwen/Qwen2.5-0.5B-Instruct. It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Qwen/Qwen2.5-0.5B-Instruct
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 896 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AlexWortega/qwen_emb_600_best_21.11")
# Run inference
sentences = [
    'Is a birth certificate a form of ID?',
    'Identity documents in the United States\nThe birth certificate is the initial identification document issued to parents shortly after the birth of their child. The birth certificate is typically issued by local governments, usually the city or county where a child is born. It is an important record, often called a "feeder document," because it establishes U.S. citizenship through birthright citizenship, which is then used to obtain, or is the basis for, all other identity documents.[2] By itself, the birth certificate is usually only considered proof of citizenship but not proof of identity, since it is issued without a photograph at birth, containing no identifying features. A birth certificate is normally produced along with proof of identity, such as a driver\'s license or the testimony of a third party (such as a parent), to establish identity or entitlement to a service.',
    "Identity document\nIn Canada, different forms of identification documentation are used, but there is no de jure national identity card. The Canadian passport is issued by the federal (national) government, and the provinces and territories issue various documents which can be used for identification purposes. The most commonly used forms of identification within Canada are the health card and driver's licence issued by provincial and territorial governments. The widespread usage of these two documents for identification purposes has made them de facto identity cards.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 896]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with InformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
cosine_accuracy@1 0.18 0.6 0.28 0.18 0.46 0.22 0.32 0.28 0.84 0.26 0.06 0.26 0.449
cosine_accuracy@3 0.28 0.72 0.56 0.28 0.56 0.34 0.42 0.4 0.92 0.38 0.42 0.38 0.7143
cosine_accuracy@5 0.32 0.82 0.66 0.4 0.6 0.34 0.46 0.5 0.92 0.48 0.52 0.5 0.7959
cosine_accuracy@10 0.4 0.88 0.82 0.5 0.68 0.44 0.52 0.58 0.98 0.62 0.68 0.6 0.9796
cosine_precision@1 0.18 0.6 0.28 0.18 0.46 0.22 0.32 0.28 0.84 0.26 0.06 0.26 0.449
cosine_precision@3 0.1 0.4333 0.1867 0.1133 0.2333 0.1133 0.28 0.1333 0.3667 0.1533 0.14 0.1333 0.3946
cosine_precision@5 0.072 0.416 0.136 0.096 0.148 0.068 0.24 0.1 0.236 0.148 0.104 0.104 0.3673
cosine_precision@10 0.052 0.34 0.086 0.062 0.09 0.044 0.18 0.058 0.128 0.118 0.068 0.066 0.3347
cosine_recall@1 0.07 0.0588 0.26 0.0969 0.23 0.22 0.0125 0.27 0.7407 0.053 0.06 0.235 0.0347
cosine_recall@3 0.1283 0.1203 0.52 0.1971 0.35 0.34 0.0367 0.37 0.8687 0.093 0.42 0.355 0.0924
cosine_recall@5 0.145 0.1722 0.63 0.275 0.37 0.34 0.0562 0.47 0.886 0.15 0.52 0.465 0.1378
cosine_recall@10 0.1933 0.2396 0.79 0.3352 0.45 0.44 0.0669 0.53 0.956 0.2407 0.68 0.58 0.2392
cosine_ndcg@10 0.1694 0.4329 0.5142 0.2365 0.4053 0.3192 0.2211 0.3978 0.889 0.2161 0.3708 0.3967 0.3738
cosine_mrr@10 0.2476 0.6865 0.4404 0.2642 0.5121 0.2824 0.3847 0.3705 0.8829 0.3527 0.2719 0.3504 0.6104
cosine_map@100 0.1356 0.2693 0.4253 0.1923 0.3491 0.2998 0.0815 0.3635 0.8629 0.1591 0.2829 0.3458 0.3108

Nano BEIR

Metric Value
cosine_accuracy@1 0.3376
cosine_accuracy@3 0.4903
cosine_accuracy@5 0.5628
cosine_accuracy@10 0.6677
cosine_precision@1 0.3376
cosine_precision@3 0.2139
cosine_precision@5 0.1719
cosine_precision@10 0.1251
cosine_recall@1 0.1801
cosine_recall@3 0.2993
cosine_recall@5 0.3552
cosine_recall@10 0.4416
cosine_ndcg@10 0.3802
cosine_mrr@10 0.4351
cosine_map@100 0.3137

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,077,240 training samples
  • Columns: query, response, and negative
  • Approximate statistics based on the first 1000 samples:
    query response negative
    type string string string
    details
    • min: 4 tokens
    • mean: 8.76 tokens
    • max: 26 tokens
    • min: 23 tokens
    • mean: 141.88 tokens
    • max: 532 tokens
    • min: 4 tokens
    • mean: 134.02 tokens
    • max: 472 tokens
  • Samples:
    query response negative
    Was there a year 0? Year zero
    Year zero does not exist in the anno Domini system usually used to number years in the Gregorian calendar and in its predecessor, the Julian calendar. In this system, the year 1 BC is followed by AD 1. However, there is a year zero in astronomical year numbering (where it coincides with the Julian year 1 BC) and in ISO 8601:2004 (where it coincides with the Gregorian year 1 BC) as well as in all Buddhist and Hindu calendars.
    504
    Year 504 (DIV) was a leap year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Nicomachus without colleague (or, less frequently, year 1257 "Ab urbe condita"). The denomination 504 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.
    When is the dialectical method used? Dialectic
    Dialectic or dialectics (Greek: διαλεκτική, dialektikḗ; related to dialogue), also known as the dialectical method, is at base a discourse between two or more people holding different points of view about a subject but wishing to establish the truth through reasoned arguments. Dialectic resembles debate, but the concept excludes subjective elements such as emotional appeal and the modern pejorative sense of rhetoric.[1][2] Dialectic may be contrasted with the didactic method, wherein one side of the conversation teaches the other. Dialectic is alternatively known as minor logic, as opposed to major logic or critique.
    Derek Bentley case
    Another factor in the posthumous defence was that a "confession" recorded by Bentley, which was claimed by the prosecution to be a "verbatim record of dictated monologue", was shown by forensic linguistics methods to have been largely edited by policemen. Linguist Malcolm Coulthard showed that certain patterns, such as the frequency of the word "then" and the grammatical use of "then" after the grammatical subject ("I then" rather than "then I"), were not consistent with Bentley's use of language (his idiolect), as evidenced in court testimony. These patterns fit better the recorded testimony of the policemen involved. This is one of the earliest uses of forensic linguistics on record.
    What do Grasshoppers eat? Grasshopper
    Grasshoppers are plant-eaters, with a few species at times becoming serious pests of cereals, vegetables and pasture, especially when they swarm in their millions as locusts and destroy crops over wide areas. They protect themselves from predators by camouflage; when detected, many species attempt to startle the predator with a brilliantly-coloured wing-flash while jumping and (if adult) launching themselves into the air, usually flying for only a short distance. Other species such as the rainbow grasshopper have warning coloration which deters predators. Grasshoppers are affected by parasites and various diseases, and many predatory creatures feed on both nymphs and adults. The eggs are the subject of attack by parasitoids and predators.
    Groundhog
    Very often the dens of groundhogs provide homes for other animals including skunks, red foxes, and cottontail rabbits. The fox and skunk feed upon field mice, grasshoppers, beetles and other creatures that destroy farm crops. In aiding these animals, the groundhog indirectly helps the farmer. In addition to providing homes for itself and other animals, the groundhog aids in soil improvement by bringing subsoil to the surface. The groundhog is also a valuable game animal and is considered a difficult sport when hunted in a fair manner. In some parts of Appalachia, they are eaten.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • gradient_accumulation_steps: 8
  • learning_rate: 0.0001
  • max_grad_norm: 0.01
  • num_train_epochs: 2
  • warmup_ratio: 0.4
  • bf16: True
  • dataloader_num_workers: 8
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 0.01
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.4
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss NanoClimateFEVER_cosine_ndcg@10 NanoDBPedia_cosine_ndcg@10 NanoFEVER_cosine_ndcg@10 NanoFiQA2018_cosine_ndcg@10 NanoHotpotQA_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoNFCorpus_cosine_ndcg@10 NanoNQ_cosine_ndcg@10 NanoQuoraRetrieval_cosine_ndcg@10 NanoSCIDOCS_cosine_ndcg@10 NanoArguAna_cosine_ndcg@10 NanoSciFact_cosine_ndcg@10 NanoTouche2020_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0.0002 2 1.8808 - - - - - - - - - - - - - -
0.0005 4 1.9239 - - - - - - - - - - - - - -
0.0007 6 2.0324 - - - - - - - - - - - - - -
0.0010 8 2.0387 - - - - - - - - - - - - - -
0.0012 10 2.0336 - - - - - - - - - - - - - -
0.0014 12 1.9943 - - - - - - - - - - - - - -
0.0017 14 1.971 - - - - - - - - - - - - - -
0.0019 16 1.9206 - - - - - - - - - - - - - -
0.0021 18 1.8157 - - - - - - - - - - - - - -
0.0024 20 1.8605 - - - - - - - - - - - - - -
0.0026 22 1.862 - - - - - - - - - - - - - -
0.0029 24 1.9313 - - - - - - - - - - - - - -
0.0031 26 1.8326 - - - - - - - - - - - - - -
0.0033 28 1.9208 - - - - - - - - - - - - - -
0.0036 30 2.4718 - - - - - - - - - - - - - -
0.0038 32 2.4819 - - - - - - - - - - - - - -
0.0040 34 2.4956 - - - - - - - - - - - - - -
0.0043 36 2.4335 - - - - - - - - - - - - - -
0.0045 38 2.4694 - - - - - - - - - - - - - -
0.0048 40 2.5719 - - - - - - - - - - - - - -
0.0050 42 2.4666 - - - - - - - - - - - - - -
0.0052 44 2.4919 - - - - - - - - - - - - - -
0.0055 46 2.4179 - - - - - - - - - - - - - -
0.0057 48 2.4022 - - - - - - - - - - - - - -
0.0059 50 2.39 - - - - - - - - - - - - - -
0.0062 52 2.4682 - - - - - - - - - - - - - -
0.0064 54 2.3442 - - - - - - - - - - - - - -
0.0067 56 2.3157 - - - - - - - - - - - - - -
0.0069 58 2.2665 - - - - - - - - - - - - - -
0.0071 60 2.2969 - - - - - - - - - - - - - -
0.0074 62 2.1652 - - - - - - - - - - - - - -
0.0076 64 2.1243 - - - - - - - - - - - - - -
0.0078 66 2.0499 - - - - - - - - - - - - - -
0.0081 68 2.0115 - - - - - - - - - - - - - -
0.0083 70 1.8372 - - - - - - - - - - - - - -
0.0086 72 1.6257 - - - - - - - - - - - - - -
0.0088 74 1.6398 - - - - - - - - - - - - - -
0.0090 76 1.4927 - - - - - - - - - - - - - -
0.0093 78 1.3491 - - - - - - - - - - - - - -
0.0095 80 1.3303 - - - - - - - - - - - - - -
0.0097 82 1.3846 - - - - - - - - - - - - - -
0.0100 84 1.2647 - - - - - - - - - - - - - -
0.0102 86 1.1579 - - - - - - - - - - - - - -
0.0105 88 1.0146 - - - - - - - - - - - - - -
0.0107 90 0.9201 - - - - - - - - - - - - - -
0.0109 92 0.8631 - - - - - - - - - - - - - -
0.0112 94 0.7801 - - - - - - - - - - - - - -
0.0114 96 0.7813 - - - - - - - - - - - - - -
0.0116 98 0.7898 - - - - - - - - - - - - - -
0.0119 100 0.722 - - - - - - - - - - - - - -
0.0121 102 0.7595 - - - - - - - - - - - - - -
0.0124 104 0.6245 - - - - - - - - - - - - - -
0.0126 106 0.6036 - - - - - - - - - - - - - -
0.0128 108 0.7248 - - - - - - - - - - - - - -
0.0131 110 0.637 - - - - - - - - - - - - - -
0.0133 112 0.6205 - - - - - - - - - - - - - -
0.0135 114 0.5956 - - - - - - - - - - - - - -
0.0138 116 0.6126 - - - - - - - - - - - - - -
0.0140 118 0.547 - - - - - - - - - - - - - -
0.0143 120 0.5414 - - - - - - - - - - - - - -
0.0145 122 0.4896 - - - - - - - - - - - - - -
0.0147 124 0.5351 - - - - - - - - - - - - - -
0.0150 126 0.5404 - - - - - - - - - - - - - -
0.0152 128 0.4479 - - - - - - - - - - - - - -
0.0154 130 1.1779 - - - - - - - - - - - - - -
0.0157 132 1.4533 - - - - - - - - - - - - - -
0.0159 134 1.5042 - - - - - - - - - - - - - -
0.0162 136 1.2167 - - - - - - - - - - - - - -
0.0164 138 1.2484 - - - - - - - - - - - - - -
0.0166 140 1.1236 - - - - - - - - - - - - - -
0.0169 142 1.1729 - - - - - - - - - - - - - -
0.0171 144 1.0076 - - - - - - - - - - - - - -
0.0173 146 1.0314 - - - - - - - - - - - - - -
0.0176 148 0.9106 - - - - - - - - - - - - - -
0.0178 150 0.8994 - - - - - - - - - - - - - -
0.0181 152 0.9679 - - - - - - - - - - - - - -
0.0183 154 0.8576 - - - - - - - - - - - - - -
0.0185 156 0.777 - - - - - - - - - - - - - -
0.0188 158 0.8527 - - - - - - - - - - - - - -
0.0190 160 0.864 - - - - - - - - - - - - - -
0.0192 162 0.807 - - - - - - - - - - - - - -
0.0195 164 0.9083 - - - - - - - - - - - - - -
0.0197 166 0.7705 - - - - - - - - - - - - - -
0.0200 168 0.7179 - - - - - - - - - - - - - -
0.0202 170 0.7485 - - - - - - - - - - - - - -
0.0204 172 0.7198 - - - - - - - - - - - - - -
0.0207 174 0.7712 - - - - - - - - - - - - - -
0.0209 176 0.82 - - - - - - - - - - - - - -
0.0212 178 0.7744 - - - - - - - - - - - - - -
0.0214 180 0.7668 - - - - - - - - - - - - - -
0.0216 182 0.6501 - - - - - - - - - - - - - -
0.0219 184 0.6327 - - - - - - - - - - - - - -
0.0221 186 0.752 - - - - - - - - - - - - - -
0.0223 188 0.6204 - - - - - - - - - - - - - -
0.0226 190 0.6258 - - - - - - - - - - - - - -
0.0228 192 0.607 - - - - - - - - - - - - - -
0.0231 194 0.5688 - - - - - - - - - - - - - -
0.0233 196 0.6831 - - - - - - - - - - - - - -
0.0235 198 0.5653 - - - - - - - - - - - - - -
0.0238 200 0.5966 - - - - - - - - - - - - - -
0.0240 202 0.5798 - - - - - - - - - - - - - -
0.0242 204 0.5991 - - - - - - - - - - - - - -
0.0245 206 0.5856 - - - - - - - - - - - - - -
0.0247 208 0.5935 - - - - - - - - - - - - - -
0.0250 210 0.5624 - - - - - - - - - - - - - -
0.0252 212 0.6188 - - - - - - - - - - - - - -
0.0254 214 0.5497 - - - - - - - - - - - - - -
0.0257 216 0.582 - - - - - - - - - - - - - -
0.0259 218 0.5912 - - - - - - - - - - - - - -
0.0261 220 0.4818 - - - - - - - - - - - - - -
0.0264 222 0.5686 - - - - - - - - - - - - - -
0.0266 224 0.5174 - - - - - - - - - - - - - -
0.0269 226 0.523 - - - - - - - - - - - - - -
0.0271 228 0.5337 - - - - - - - - - - - - - -
0.0273 230 0.5253 - - - - - - - - - - - - - -
0.0276 232 0.5434 - - - - - - - - - - - - - -
0.0278 234 0.5351 - - - - - - - - - - - - - -
0.0280 236 0.5202 - - - - - - - - - - - - - -
0.0283 238 0.4611 - - - - - - - - - - - - - -
0.0285 240 0.4509 - - - - - - - - - - - - - -
0.0288 242 0.5217 - - - - - - - - - - - - - -
0.0290 244 0.5256 - - - - - - - - - - - - - -
0.0292 246 0.5529 - - - - - - - - - - - - - -
0.0295 248 0.4944 - - - - - - - - - - - - - -
0.0297 250 0.568 - - - - - - - - - - - - - -
0.0299 252 0.5024 - - - - - - - - - - - - - -
0.0302 254 0.5094 - - - - - - - - - - - - - -
0.0304 256 0.5057 - - - - - - - - - - - - - -
0.0307 258 0.5424 - - - - - - - - - - - - - -
0.0309 260 0.6485 - - - - - - - - - - - - - -
0.0311 262 0.4823 - - - - - - - - - - - - - -
0.0314 264 0.475 - - - - - - - - - - - - - -
0.0316 266 0.3753 - - - - - - - - - - - - - -
0.0318 268 0.5117 - - - - - - - - - - - - - -
0.0321 270 0.4067 - - - - - - - - - - - - - -
0.0323 272 0.4706 - - - - - - - - - - - - - -
0.0326 274 0.4099 - - - - - - - - - - - - - -
0.0328 276 0.4251 - - - - - - - - - - - - - -
0.0330 278 0.4392 - - - - - - - - - - - - - -
0.0333 280 0.5373 - - - - - - - - - - - - - -
0.0335 282 0.4259 - - - - - - - - - - - - - -
0.0337 284 0.4227 - - - - - - - - - - - - - -
0.0340 286 0.4774 - - - - - - - - - - - - - -
0.0342 288 0.4878 - - - - - - - - - - - - - -
0.0345 290 0.5619 - - - - - - - - - - - - - -
0.0347 292 0.5061 - - - - - - - - - - - - - -
0.0349 294 0.5434 - - - - - - - - - - - - - -
0.0352 296 0.5115 - - - - - - - - - - - - - -
0.0354 298 0.4281 - - - - - - - - - - - - - -
0.0356 300 0.4287 - - - - - - - - - - - - - -
0.0359 302 0.4864 - - - - - - - - - - - - - -
0.0361 304 0.4724 - - - - - - - - - - - - - -
0.0364 306 0.4607 - - - - - - - - - - - - - -
0.0366 308 0.3978 - - - - - - - - - - - - - -
0.0368 310 0.4851 - - - - - - - - - - - - - -
0.0371 312 0.3466 - - - - - - - - - - - - - -
0.0373 314 0.565 - - - - - - - - - - - - - -
0.0375 316 0.4122 - - - - - - - - - - - - - -
0.0378 318 0.3757 - - - - - - - - - - - - - -
0.0380 320 0.4673 - - - - - - - - - - - - - -
0.0383 322 0.4358 - - - - - - - - - - - - - -
0.0385 324 0.4423 - - - - - - - - - - - - - -
0.0387 326 0.3754 - - - - - - - - - - - - - -
0.0390 328 0.4358 - - - - - - - - - - - - - -
0.0392 330 0.408 - - - - - - - - - - - - - -
0.0394 332 0.3901 - - - - - - - - - - - - - -
0.0397 334 0.4155 - - - - - - - - - - - - - -
0.0399 336 0.379 - - - - - - - - - - - - - -
0.0402 338 0.373 - - - - - - - - - - - - - -
0.0404 340 0.2917 - - - - - - - - - - - - - -
0.0406 342 0.3755 - - - - - - - - - - - - - -
0.0409 344 0.3262 - - - - - - - - - - - - - -
0.0411 346 0.4975 - - - - - - - - - - - - - -
0.0414 348 0.3469 - - - - - - - - - - - - - -
0.0416 350 0.3895 - - - - - - - - - - - - - -
0.0418 352 0.4424 - - - - - - - - - - - - - -
0.0421 354 0.3609 - - - - - - - - - - - - - -
0.0423 356 0.434 - - - - - - - - - - - - - -
0.0425 358 0.4474 - - - - - - - - - - - - - -
0.0428 360 0.3514 - - - - - - - - - - - - - -
0.0430 362 0.4029 - - - - - - - - - - - - - -
0.0433 364 0.4438 - - - - - - - - - - - - - -
0.0435 366 0.4271 - - - - - - - - - - - - - -
0.0437 368 0.3825 - - - - - - - - - - - - - -
0.0440 370 0.3848 - - - - - - - - - - - - - -
0.0442 372 0.4088 - - - - - - - - - - - - - -
0.0444 374 0.4188 - - - - - - - - - - - - - -
0.0447 376 0.4333 - - - - - - - - - - - - - -
0.0449 378 0.3784 - - - - - - - - - - - - - -
0.0452 380 0.4509 - - - - - - - - - - - - - -
0.0454 382 0.4084 - - - - - - - - - - - - - -
0.0456 384 0.371 - - - - - - - - - - - - - -
0.0459 386 0.3965 - - - - - - - - - - - - - -
0.0461 388 0.375 - - - - - - - - - - - - - -
0.0463 390 0.4098 - - - - - - - - - - - - - -
0.0466 392 0.4198 - - - - - - - - - - - - - -
0.0468 394 0.3854 - - - - - - - - - - - - - -
0.0471 396 0.3146 - - - - - - - - - - - - - -
0.0473 398 0.3892 - - - - - - - - - - - - - -
0.0475 400 0.3295 - - - - - - - - - - - - - -
0.0478 402 0.4124 - - - - - - - - - - - - - -
0.0480 404 0.3039 - - - - - - - - - - - - - -
0.0482 406 0.3353 - - - - - - - - - - - - - -
0.0485 408 0.4382 - - - - - - - - - - - - - -
0.0487 410 0.4013 - - - - - - - - - - - - - -
0.0490 412 0.3283 - - - - - - - - - - - - - -
0.0492 414 0.4264 - - - - - - - - - - - - - -
0.0494 416 0.4295 - - - - - - - - - - - - - -
0.0497 418 0.3451 - - - - - - - - - - - - - -
0.0499 420 0.2973 - - - - - - - - - - - - - -
0.0501 422 0.3734 - - - - - - - - - - - - - -
0.0504 424 0.3992 - - - - - - - - - - - - - -
0.0506 426 0.3234 - - - - - - - - - - - - - -
0.0509 428 0.4007 - - - - - - - - - - - - - -
0.0511 430 0.4446 - - - - - - - - - - - - - -
0.0513 432 0.282 - - - - - - - - - - - - - -
0.0516 434 0.3922 - - - - - - - - - - - - - -
0.0518 436 0.4224 - - - - - - - - - - - - - -
0.0520 438 0.3362 - - - - - - - - - - - - - -
0.0523 440 0.3461 - - - - - - - - - - - - - -
0.0525 442 0.344 - - - - - - - - - - - - - -
0.0528 444 0.4355 - - - - - - - - - - - - - -
0.0530 446 0.3443 - - - - - - - - - - - - - -
0.0532 448 0.4363 - - - - - - - - - - - - - -
0.0535 450 0.3282 - - - - - - - - - - - - - -
0.0537 452 0.3761 - - - - - - - - - - - - - -
0.0539 454 0.3279 - - - - - - - - - - - - - -
0.0542 456 0.3774 - - - - - - - - - - - - - -
0.0544 458 0.3888 - - - - - - - - - - - - - -
0.0547 460 0.5149 - - - - - - - - - - - - - -
0.0549 462 0.343 - - - - - - - - - - - - - -
0.0551 464 0.3943 - - - - - - - - - - - - - -
0.0554 466 0.366 - - - - - - - - - - - - - -
0.0556 468 0.344 - - - - - - - - - - - - - -
0.0558 470 0.3681 - - - - - - - - - - - - - -
0.0561 472 0.3041 - - - - - - - - - - - - - -
0.0563 474 0.3857 - - - - - - - - - - - - - -
0.0566 476 0.3665 - - - - - - - - - - - - - -
0.0568 478 0.3871 - - - - - - - - - - - - - -
0.0570 480 0.4707 - - - - - - - - - - - - - -
0.0573 482 0.4031 - - - - - - - - - - - - - -
0.0575 484 0.385 - - - - - - - - - - - - - -
0.0577 486 0.2868 - - - - - - - - - - - - - -
0.0580 488 0.3637 - - - - - - - - - - - - - -
0.0582 490 0.4484 - - - - - - - - - - - - - -
0.0585 492 0.4984 - - - - - - - - - - - - - -
0.0587 494 0.3725 - - - - - - - - - - - - - -
0.0589 496 0.3102 - - - - - - - - - - - - - -
0.0592 498 0.3529 - - - - - - - - - - - - - -
0.0594 500 0.3929 - - - - - - - - - - - - - -
0.0596 502 0.3012 - - - - - - - - - - - - - -
0.0599 504 0.4137 - - - - - - - - - - - - - -
0.0601 506 0.3987 - - - - - - - - - - - - - -
0.0604 508 0.3724 - - - - - - - - - - - - - -
0.0606 510 0.3761 - - - - - - - - - - - - - -
0.0608 512 0.389 - - - - - - - - - - - - - -
0.0611 514 0.3775 - - - - - - - - - - - - - -
0.0613 516 0.3429 - - - - - - - - - - - - - -
0.0616 518 0.348 - - - - - - - - - - - - - -
0.0618 520 0.3706 - - - - - - - - - - - - - -
0.0620 522 0.3563 - - - - - - - - - - - - - -
0.0623 524 0.3029 - - - - - - - - - - - - - -
0.0625 526 0.4227 - - - - - - - - - - - - - -
0.0627 528 0.3457 - - - - - - - - - - - - - -
0.0630 530 0.3666 - - - - - - - - - - - - - -
0.0632 532 0.3331 - - - - - - - - - - - - - -
0.0635 534 0.3362 - - - - - - - - - - - - - -
0.0637 536 0.3974 - - - - - - - - - - - - - -
0.0639 538 0.3841 - - - - - - - - - - - - - -
0.0642 540 0.3318 - - - - - - - - - - - - - -
0.0644 542 0.3349 - - - - - - - - - - - - - -
0.0646 544 0.461 - - - - - - - - - - - - - -
0.0649 546 0.3271 - - - - - - - - - - - - - -
0.0651 548 0.3901 - - - - - - - - - - - - - -
0.0654 550 0.3292 - - - - - - - - - - - - - -
0.0656 552 0.3291 - - - - - - - - - - - - - -
0.0658 554 0.374 - - - - - - - - - - - - - -
0.0661 556 0.3432 - - - - - - - - - - - - - -
0.0663 558 0.2994 - - - - - - - - - - - - - -
0.0665 560 0.3391 - - - - - - - - - - - - - -
0.0668 562 0.3764 - - - - - - - - - - - - - -
0.0670 564 0.2555 - - - - - - - - - - - - - -
0.0673 566 0.3553 - - - - - - - - - - - - - -
0.0675 568 0.3436 - - - - - - - - - - - - - -
0.0677 570 0.4347 - - - - - - - - - - - - - -
0.0680 572 0.3271 - - - - - - - - - - - - - -
0.0682 574 0.2988 - - - - - - - - - - - - - -
0.0684 576 0.3698 - - - - - - - - - - - - - -
0.0687 578 0.3309 - - - - - - - - - - - - - -
0.0689 580 0.3529 - - - - - - - - - - - - - -
0.0692 582 0.3685 - - - - - - - - - - - - - -
0.0694 584 0.333 - - - - - - - - - - - - - -
0.0696 586 0.3344 - - - - - - - - - - - - - -
0.0699 588 0.3496 - - - - - - - - - - - - - -
0.0701 590 0.3616 - - - - - - - - - - - - - -
0.0703 592 0.3637 - - - - - - - - - - - - - -
0.0706 594 0.3745 - - - - - - - - - - - - - -
0.0708 596 0.3465 - - - - - - - - - - - - - -
0.0711 598 0.4128 - - - - - - - - - - - - - -
0.0713 600 0.3674 0.1694 0.4329 0.5142 0.2365 0.4053 0.3192 0.2211 0.3978 0.8890 0.2161 0.3708 0.3967 0.3738 0.3802

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.0
  • Transformers: 4.46.2
  • PyTorch: 2.1.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}