File size: 2,952 Bytes
063831e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: apache-2.0
language:
- en
pipeline_tag: summarization
widget:
- text: What is the peak phase of T-eV?
example_title: Question Answering
tags:
- arxiv
---
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Citation](#citation)
# TL;DR
This is a Phi-1_5 model trained on [camel-ai/physics](https://huggingface.co/datasets/meta-math/MetaMathQA). This model is for research purposes only and ***should not be used in production settings***.
## Model Description
- **Model type:** Language model
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Related Models:** [Phi-1_5](https://huggingface.co/microsoft/phi-1_5)
# Usage
Find below some example scripts on how to use the model in `transformers`:
## Using the Pytorch model
```python
from huggingface_hub import notebook_login
from datasets import load_dataset, Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = "ArtifactAI/phi-metamath"
model = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code= True)
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
def generate(prompt):
inputs = tokenizer(f'''Below is an instruction that describes a task. Write a response that appropriately completes the request If you are adding additional white spaces, stop writing".\n\n### Instruction:\n{prompt}.\n\n### Response:\n ''', return_tensors="pt", return_attention_mask=False)
streamer = TextStreamer(tokenizer, skip_prompt= True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=500)
generate("What are the common techniques used in identifying a new species, and how can scientists accurately categorize it within the existing taxonomy system?")
```
## Training Data
The model was trained on [camel-ai/phi-physics](https://huggingface.co/datasets/meta-math/MetaMathQA), a dataset of question/answer pairs.
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.2
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.2
# Citation
```
@misc{phi-metamath,
title={phi-metamath},
author={Matthew Kenney},
year={2023}
}
``` |