thenlper's picture
update readme for instructions for usage with infinity (#39)
a883b02 verified
metadata
tags:
  - mteb
  - sentence-transformers
  - transformers
  - Qwen2
  - sentence-similarity
license: apache-2.0
model-index:
  - name: gte-qwen2-7B-instruct
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 91.31343283582089
          - type: ap
            value: 67.64251402604096
          - type: f1
            value: 87.53372530755692
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 97.497825
          - type: ap
            value: 96.30329547047529
          - type: f1
            value: 97.49769793778039
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 62.564
          - type: f1
            value: 60.975777935041066
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 36.486000000000004
          - type: map_at_10
            value: 54.842
          - type: map_at_100
            value: 55.206999999999994
          - type: map_at_1000
            value: 55.206999999999994
          - type: map_at_3
            value: 49.893
          - type: map_at_5
            value: 53.105000000000004
          - type: mrr_at_1
            value: 37.34
          - type: mrr_at_10
            value: 55.143
          - type: mrr_at_100
            value: 55.509
          - type: mrr_at_1000
            value: 55.509
          - type: mrr_at_3
            value: 50.212999999999994
          - type: mrr_at_5
            value: 53.432
          - type: ndcg_at_1
            value: 36.486000000000004
          - type: ndcg_at_10
            value: 64.273
          - type: ndcg_at_100
            value: 65.66199999999999
          - type: ndcg_at_1000
            value: 65.66199999999999
          - type: ndcg_at_3
            value: 54.352999999999994
          - type: ndcg_at_5
            value: 60.131
          - type: precision_at_1
            value: 36.486000000000004
          - type: precision_at_10
            value: 9.395000000000001
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.428
          - type: precision_at_5
            value: 16.259
          - type: recall_at_1
            value: 36.486000000000004
          - type: recall_at_10
            value: 93.95400000000001
          - type: recall_at_100
            value: 99.644
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 67.283
          - type: recall_at_5
            value: 81.294
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 56.461169803700564
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 51.73600434466286
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 67.57827065898053
          - type: mrr
            value: 79.08136569493911
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 83.53324575999243
          - type: cos_sim_spearman
            value: 81.37173362822374
          - type: euclidean_pearson
            value: 82.19243335103444
          - type: euclidean_spearman
            value: 81.33679307304334
          - type: manhattan_pearson
            value: 82.38752665975699
          - type: manhattan_spearman
            value: 81.31510583189689
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.56818181818181
          - type: f1
            value: 87.25826722019875
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 50.09239610327673
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 46.64733054606282
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 33.997
          - type: map_at_10
            value: 48.176
          - type: map_at_100
            value: 49.82
          - type: map_at_1000
            value: 49.924
          - type: map_at_3
            value: 43.626
          - type: map_at_5
            value: 46.275
          - type: mrr_at_1
            value: 42.059999999999995
          - type: mrr_at_10
            value: 53.726
          - type: mrr_at_100
            value: 54.398
          - type: mrr_at_1000
            value: 54.416
          - type: mrr_at_3
            value: 50.714999999999996
          - type: mrr_at_5
            value: 52.639
          - type: ndcg_at_1
            value: 42.059999999999995
          - type: ndcg_at_10
            value: 55.574999999999996
          - type: ndcg_at_100
            value: 60.744
          - type: ndcg_at_1000
            value: 61.85699999999999
          - type: ndcg_at_3
            value: 49.363
          - type: ndcg_at_5
            value: 52.44
          - type: precision_at_1
            value: 42.059999999999995
          - type: precision_at_10
            value: 11.101999999999999
          - type: precision_at_100
            value: 1.73
          - type: precision_at_1000
            value: 0.218
          - type: precision_at_3
            value: 24.464
          - type: precision_at_5
            value: 18.026
          - type: recall_at_1
            value: 33.997
          - type: recall_at_10
            value: 70.35900000000001
          - type: recall_at_100
            value: 91.642
          - type: recall_at_1000
            value: 97.977
          - type: recall_at_3
            value: 52.76
          - type: recall_at_5
            value: 61.148
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 35.884
          - type: map_at_10
            value: 48.14
          - type: map_at_100
            value: 49.5
          - type: map_at_1000
            value: 49.63
          - type: map_at_3
            value: 44.646
          - type: map_at_5
            value: 46.617999999999995
          - type: mrr_at_1
            value: 44.458999999999996
          - type: mrr_at_10
            value: 53.751000000000005
          - type: mrr_at_100
            value: 54.37800000000001
          - type: mrr_at_1000
            value: 54.415
          - type: mrr_at_3
            value: 51.815
          - type: mrr_at_5
            value: 52.882
          - type: ndcg_at_1
            value: 44.458999999999996
          - type: ndcg_at_10
            value: 54.157
          - type: ndcg_at_100
            value: 58.362
          - type: ndcg_at_1000
            value: 60.178
          - type: ndcg_at_3
            value: 49.661
          - type: ndcg_at_5
            value: 51.74999999999999
          - type: precision_at_1
            value: 44.458999999999996
          - type: precision_at_10
            value: 10.248
          - type: precision_at_100
            value: 1.5890000000000002
          - type: precision_at_1000
            value: 0.207
          - type: precision_at_3
            value: 23.928
          - type: precision_at_5
            value: 16.878999999999998
          - type: recall_at_1
            value: 35.884
          - type: recall_at_10
            value: 64.798
          - type: recall_at_100
            value: 82.345
          - type: recall_at_1000
            value: 93.267
          - type: recall_at_3
            value: 51.847
          - type: recall_at_5
            value: 57.601
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 39.383
          - type: map_at_10
            value: 53.714
          - type: map_at_100
            value: 54.838
          - type: map_at_1000
            value: 54.87800000000001
          - type: map_at_3
            value: 50.114999999999995
          - type: map_at_5
            value: 52.153000000000006
          - type: mrr_at_1
            value: 45.016
          - type: mrr_at_10
            value: 56.732000000000006
          - type: mrr_at_100
            value: 57.411
          - type: mrr_at_1000
            value: 57.431
          - type: mrr_at_3
            value: 54.044000000000004
          - type: mrr_at_5
            value: 55.639
          - type: ndcg_at_1
            value: 45.016
          - type: ndcg_at_10
            value: 60.228
          - type: ndcg_at_100
            value: 64.277
          - type: ndcg_at_1000
            value: 65.07
          - type: ndcg_at_3
            value: 54.124
          - type: ndcg_at_5
            value: 57.147000000000006
          - type: precision_at_1
            value: 45.016
          - type: precision_at_10
            value: 9.937
          - type: precision_at_100
            value: 1.288
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 24.471999999999998
          - type: precision_at_5
            value: 16.991
          - type: recall_at_1
            value: 39.383
          - type: recall_at_10
            value: 76.175
          - type: recall_at_100
            value: 93.02
          - type: recall_at_1000
            value: 98.60900000000001
          - type: recall_at_3
            value: 60.265
          - type: recall_at_5
            value: 67.46600000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 27.426000000000002
          - type: map_at_10
            value: 37.397000000000006
          - type: map_at_100
            value: 38.61
          - type: map_at_1000
            value: 38.678000000000004
          - type: map_at_3
            value: 34.150999999999996
          - type: map_at_5
            value: 36.137
          - type: mrr_at_1
            value: 29.944
          - type: mrr_at_10
            value: 39.654
          - type: mrr_at_100
            value: 40.638000000000005
          - type: mrr_at_1000
            value: 40.691
          - type: mrr_at_3
            value: 36.817
          - type: mrr_at_5
            value: 38.524
          - type: ndcg_at_1
            value: 29.944
          - type: ndcg_at_10
            value: 43.094
          - type: ndcg_at_100
            value: 48.789
          - type: ndcg_at_1000
            value: 50.339999999999996
          - type: ndcg_at_3
            value: 36.984
          - type: ndcg_at_5
            value: 40.248
          - type: precision_at_1
            value: 29.944
          - type: precision_at_10
            value: 6.78
          - type: precision_at_100
            value: 1.024
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 15.895000000000001
          - type: precision_at_5
            value: 11.39
          - type: recall_at_1
            value: 27.426000000000002
          - type: recall_at_10
            value: 58.464000000000006
          - type: recall_at_100
            value: 84.193
          - type: recall_at_1000
            value: 95.52000000000001
          - type: recall_at_3
            value: 42.172
          - type: recall_at_5
            value: 50.101
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 19.721
          - type: map_at_10
            value: 31.604
          - type: map_at_100
            value: 32.972
          - type: map_at_1000
            value: 33.077
          - type: map_at_3
            value: 27.218999999999998
          - type: map_at_5
            value: 29.53
          - type: mrr_at_1
            value: 25
          - type: mrr_at_10
            value: 35.843
          - type: mrr_at_100
            value: 36.785000000000004
          - type: mrr_at_1000
            value: 36.842000000000006
          - type: mrr_at_3
            value: 32.193
          - type: mrr_at_5
            value: 34.264
          - type: ndcg_at_1
            value: 25
          - type: ndcg_at_10
            value: 38.606
          - type: ndcg_at_100
            value: 44.272
          - type: ndcg_at_1000
            value: 46.527
          - type: ndcg_at_3
            value: 30.985000000000003
          - type: ndcg_at_5
            value: 34.43
          - type: precision_at_1
            value: 25
          - type: precision_at_10
            value: 7.811
          - type: precision_at_100
            value: 1.203
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_3
            value: 15.423
          - type: precision_at_5
            value: 11.791
          - type: recall_at_1
            value: 19.721
          - type: recall_at_10
            value: 55.625
          - type: recall_at_100
            value: 79.34400000000001
          - type: recall_at_1000
            value: 95.208
          - type: recall_at_3
            value: 35.19
          - type: recall_at_5
            value: 43.626
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 33.784
          - type: map_at_10
            value: 47.522
          - type: map_at_100
            value: 48.949999999999996
          - type: map_at_1000
            value: 49.038
          - type: map_at_3
            value: 43.284
          - type: map_at_5
            value: 45.629
          - type: mrr_at_1
            value: 41.482
          - type: mrr_at_10
            value: 52.830999999999996
          - type: mrr_at_100
            value: 53.559999999999995
          - type: mrr_at_1000
            value: 53.588
          - type: mrr_at_3
            value: 50.016000000000005
          - type: mrr_at_5
            value: 51.614000000000004
          - type: ndcg_at_1
            value: 41.482
          - type: ndcg_at_10
            value: 54.569
          - type: ndcg_at_100
            value: 59.675999999999995
          - type: ndcg_at_1000
            value: 60.989000000000004
          - type: ndcg_at_3
            value: 48.187000000000005
          - type: ndcg_at_5
            value: 51.183
          - type: precision_at_1
            value: 41.482
          - type: precision_at_10
            value: 10.221
          - type: precision_at_100
            value: 1.486
          - type: precision_at_1000
            value: 0.17500000000000002
          - type: precision_at_3
            value: 23.548
          - type: precision_at_5
            value: 16.805
          - type: recall_at_1
            value: 33.784
          - type: recall_at_10
            value: 69.798
          - type: recall_at_100
            value: 90.098
          - type: recall_at_1000
            value: 98.176
          - type: recall_at_3
            value: 52.127
          - type: recall_at_5
            value: 59.861
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 28.038999999999998
          - type: map_at_10
            value: 41.904
          - type: map_at_100
            value: 43.36
          - type: map_at_1000
            value: 43.453
          - type: map_at_3
            value: 37.785999999999994
          - type: map_at_5
            value: 40.105000000000004
          - type: mrr_at_1
            value: 35.046
          - type: mrr_at_10
            value: 46.926
          - type: mrr_at_100
            value: 47.815000000000005
          - type: mrr_at_1000
            value: 47.849000000000004
          - type: mrr_at_3
            value: 44.273
          - type: mrr_at_5
            value: 45.774
          - type: ndcg_at_1
            value: 35.046
          - type: ndcg_at_10
            value: 48.937000000000005
          - type: ndcg_at_100
            value: 54.544000000000004
          - type: ndcg_at_1000
            value: 56.069
          - type: ndcg_at_3
            value: 42.858000000000004
          - type: ndcg_at_5
            value: 45.644
          - type: precision_at_1
            value: 35.046
          - type: precision_at_10
            value: 9.452
          - type: precision_at_100
            value: 1.429
          - type: precision_at_1000
            value: 0.173
          - type: precision_at_3
            value: 21.346999999999998
          - type: precision_at_5
            value: 15.342
          - type: recall_at_1
            value: 28.038999999999998
          - type: recall_at_10
            value: 64.59700000000001
          - type: recall_at_100
            value: 87.735
          - type: recall_at_1000
            value: 97.41300000000001
          - type: recall_at_3
            value: 47.368
          - type: recall_at_5
            value: 54.93900000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 28.17291666666667
          - type: map_at_10
            value: 40.025749999999995
          - type: map_at_100
            value: 41.39208333333333
          - type: map_at_1000
            value: 41.499249999999996
          - type: map_at_3
            value: 36.347
          - type: map_at_5
            value: 38.41391666666667
          - type: mrr_at_1
            value: 33.65925
          - type: mrr_at_10
            value: 44.085499999999996
          - type: mrr_at_100
            value: 44.94116666666667
          - type: mrr_at_1000
            value: 44.9855
          - type: mrr_at_3
            value: 41.2815
          - type: mrr_at_5
            value: 42.91491666666666
          - type: ndcg_at_1
            value: 33.65925
          - type: ndcg_at_10
            value: 46.430833333333325
          - type: ndcg_at_100
            value: 51.761
          - type: ndcg_at_1000
            value: 53.50899999999999
          - type: ndcg_at_3
            value: 40.45133333333333
          - type: ndcg_at_5
            value: 43.31483333333334
          - type: precision_at_1
            value: 33.65925
          - type: precision_at_10
            value: 8.4995
          - type: precision_at_100
            value: 1.3210000000000004
          - type: precision_at_1000
            value: 0.16591666666666666
          - type: precision_at_3
            value: 19.165083333333335
          - type: precision_at_5
            value: 13.81816666666667
          - type: recall_at_1
            value: 28.17291666666667
          - type: recall_at_10
            value: 61.12624999999999
          - type: recall_at_100
            value: 83.97266666666667
          - type: recall_at_1000
            value: 95.66550000000001
          - type: recall_at_3
            value: 44.661249999999995
          - type: recall_at_5
            value: 51.983333333333334
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 24.681
          - type: map_at_10
            value: 34.892
          - type: map_at_100
            value: 35.996
          - type: map_at_1000
            value: 36.083
          - type: map_at_3
            value: 31.491999999999997
          - type: map_at_5
            value: 33.632
          - type: mrr_at_1
            value: 28.528
          - type: mrr_at_10
            value: 37.694
          - type: mrr_at_100
            value: 38.613
          - type: mrr_at_1000
            value: 38.668
          - type: mrr_at_3
            value: 34.714
          - type: mrr_at_5
            value: 36.616
          - type: ndcg_at_1
            value: 28.528
          - type: ndcg_at_10
            value: 40.703
          - type: ndcg_at_100
            value: 45.993
          - type: ndcg_at_1000
            value: 47.847
          - type: ndcg_at_3
            value: 34.622
          - type: ndcg_at_5
            value: 38.035999999999994
          - type: precision_at_1
            value: 28.528
          - type: precision_at_10
            value: 6.902
          - type: precision_at_100
            value: 1.0370000000000001
          - type: precision_at_1000
            value: 0.126
          - type: precision_at_3
            value: 15.798000000000002
          - type: precision_at_5
            value: 11.655999999999999
          - type: recall_at_1
            value: 24.681
          - type: recall_at_10
            value: 55.81
          - type: recall_at_100
            value: 79.785
          - type: recall_at_1000
            value: 92.959
          - type: recall_at_3
            value: 39.074
          - type: recall_at_5
            value: 47.568
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 18.627
          - type: map_at_10
            value: 27.872000000000003
          - type: map_at_100
            value: 29.237999999999996
          - type: map_at_1000
            value: 29.363
          - type: map_at_3
            value: 24.751
          - type: map_at_5
            value: 26.521
          - type: mrr_at_1
            value: 23.021
          - type: mrr_at_10
            value: 31.924000000000003
          - type: mrr_at_100
            value: 32.922000000000004
          - type: mrr_at_1000
            value: 32.988
          - type: mrr_at_3
            value: 29.192
          - type: mrr_at_5
            value: 30.798
          - type: ndcg_at_1
            value: 23.021
          - type: ndcg_at_10
            value: 33.535
          - type: ndcg_at_100
            value: 39.732
          - type: ndcg_at_1000
            value: 42.201
          - type: ndcg_at_3
            value: 28.153
          - type: ndcg_at_5
            value: 30.746000000000002
          - type: precision_at_1
            value: 23.021
          - type: precision_at_10
            value: 6.459
          - type: precision_at_100
            value: 1.1320000000000001
          - type: precision_at_1000
            value: 0.153
          - type: precision_at_3
            value: 13.719000000000001
          - type: precision_at_5
            value: 10.193000000000001
          - type: recall_at_1
            value: 18.627
          - type: recall_at_10
            value: 46.463
          - type: recall_at_100
            value: 74.226
          - type: recall_at_1000
            value: 91.28500000000001
          - type: recall_at_3
            value: 31.357000000000003
          - type: recall_at_5
            value: 38.067
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 31.457
          - type: map_at_10
            value: 42.888
          - type: map_at_100
            value: 44.24
          - type: map_at_1000
            value: 44.327
          - type: map_at_3
            value: 39.588
          - type: map_at_5
            value: 41.423
          - type: mrr_at_1
            value: 37.126999999999995
          - type: mrr_at_10
            value: 47.083000000000006
          - type: mrr_at_100
            value: 47.997
          - type: mrr_at_1000
            value: 48.044
          - type: mrr_at_3
            value: 44.574000000000005
          - type: mrr_at_5
            value: 46.202
          - type: ndcg_at_1
            value: 37.126999999999995
          - type: ndcg_at_10
            value: 48.833
          - type: ndcg_at_100
            value: 54.327000000000005
          - type: ndcg_at_1000
            value: 56.011
          - type: ndcg_at_3
            value: 43.541999999999994
          - type: ndcg_at_5
            value: 46.127
          - type: precision_at_1
            value: 37.126999999999995
          - type: precision_at_10
            value: 8.376999999999999
          - type: precision_at_100
            value: 1.2309999999999999
          - type: precision_at_1000
            value: 0.146
          - type: precision_at_3
            value: 20.211000000000002
          - type: precision_at_5
            value: 14.16
          - type: recall_at_1
            value: 31.457
          - type: recall_at_10
            value: 62.369
          - type: recall_at_100
            value: 85.444
          - type: recall_at_1000
            value: 96.65599999999999
          - type: recall_at_3
            value: 47.961
          - type: recall_at_5
            value: 54.676
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 27.139999999999997
          - type: map_at_10
            value: 38.801
          - type: map_at_100
            value: 40.549
          - type: map_at_1000
            value: 40.802
          - type: map_at_3
            value: 35.05
          - type: map_at_5
            value: 36.884
          - type: mrr_at_1
            value: 33.004
          - type: mrr_at_10
            value: 43.864
          - type: mrr_at_100
            value: 44.667
          - type: mrr_at_1000
            value: 44.717
          - type: mrr_at_3
            value: 40.777
          - type: mrr_at_5
            value: 42.319
          - type: ndcg_at_1
            value: 33.004
          - type: ndcg_at_10
            value: 46.022
          - type: ndcg_at_100
            value: 51.542
          - type: ndcg_at_1000
            value: 53.742000000000004
          - type: ndcg_at_3
            value: 39.795
          - type: ndcg_at_5
            value: 42.272
          - type: precision_at_1
            value: 33.004
          - type: precision_at_10
            value: 9.012
          - type: precision_at_100
            value: 1.7770000000000001
          - type: precision_at_1000
            value: 0.26
          - type: precision_at_3
            value: 19.038
          - type: precision_at_5
            value: 13.675999999999998
          - type: recall_at_1
            value: 27.139999999999997
          - type: recall_at_10
            value: 60.961
          - type: recall_at_100
            value: 84.451
          - type: recall_at_1000
            value: 98.113
          - type: recall_at_3
            value: 43.001
          - type: recall_at_5
            value: 49.896
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 17.936
          - type: map_at_10
            value: 27.399
          - type: map_at_100
            value: 28.632
          - type: map_at_1000
            value: 28.738000000000003
          - type: map_at_3
            value: 24.456
          - type: map_at_5
            value: 26.06
          - type: mrr_at_1
            value: 19.224
          - type: mrr_at_10
            value: 28.998
          - type: mrr_at_100
            value: 30.11
          - type: mrr_at_1000
            value: 30.177
          - type: mrr_at_3
            value: 26.247999999999998
          - type: mrr_at_5
            value: 27.708
          - type: ndcg_at_1
            value: 19.224
          - type: ndcg_at_10
            value: 32.911
          - type: ndcg_at_100
            value: 38.873999999999995
          - type: ndcg_at_1000
            value: 41.277
          - type: ndcg_at_3
            value: 27.142
          - type: ndcg_at_5
            value: 29.755
          - type: precision_at_1
            value: 19.224
          - type: precision_at_10
            value: 5.6930000000000005
          - type: precision_at_100
            value: 0.9259999999999999
          - type: precision_at_1000
            value: 0.126
          - type: precision_at_3
            value: 12.138
          - type: precision_at_5
            value: 8.909
          - type: recall_at_1
            value: 17.936
          - type: recall_at_10
            value: 48.096
          - type: recall_at_100
            value: 75.389
          - type: recall_at_1000
            value: 92.803
          - type: recall_at_3
            value: 32.812999999999995
          - type: recall_at_5
            value: 38.851
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 22.076999999999998
          - type: map_at_10
            value: 35.44
          - type: map_at_100
            value: 37.651
          - type: map_at_1000
            value: 37.824999999999996
          - type: map_at_3
            value: 30.764999999999997
          - type: map_at_5
            value: 33.26
          - type: mrr_at_1
            value: 50.163000000000004
          - type: mrr_at_10
            value: 61.207
          - type: mrr_at_100
            value: 61.675000000000004
          - type: mrr_at_1000
            value: 61.692
          - type: mrr_at_3
            value: 58.60999999999999
          - type: mrr_at_5
            value: 60.307
          - type: ndcg_at_1
            value: 50.163000000000004
          - type: ndcg_at_10
            value: 45.882
          - type: ndcg_at_100
            value: 53.239999999999995
          - type: ndcg_at_1000
            value: 55.852000000000004
          - type: ndcg_at_3
            value: 40.514
          - type: ndcg_at_5
            value: 42.038
          - type: precision_at_1
            value: 50.163000000000004
          - type: precision_at_10
            value: 13.466000000000001
          - type: precision_at_100
            value: 2.164
          - type: precision_at_1000
            value: 0.266
          - type: precision_at_3
            value: 29.707
          - type: precision_at_5
            value: 21.694
          - type: recall_at_1
            value: 22.076999999999998
          - type: recall_at_10
            value: 50.193
          - type: recall_at_100
            value: 74.993
          - type: recall_at_1000
            value: 89.131
          - type: recall_at_3
            value: 35.472
          - type: recall_at_5
            value: 41.814
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.953
          - type: map_at_10
            value: 24.515
          - type: map_at_100
            value: 36.173
          - type: map_at_1000
            value: 38.351
          - type: map_at_3
            value: 16.592000000000002
          - type: map_at_5
            value: 20.036
          - type: mrr_at_1
            value: 74.25
          - type: mrr_at_10
            value: 81.813
          - type: mrr_at_100
            value: 82.006
          - type: mrr_at_1000
            value: 82.011
          - type: mrr_at_3
            value: 80.875
          - type: mrr_at_5
            value: 81.362
          - type: ndcg_at_1
            value: 62.5
          - type: ndcg_at_10
            value: 52.42
          - type: ndcg_at_100
            value: 56.808
          - type: ndcg_at_1000
            value: 63.532999999999994
          - type: ndcg_at_3
            value: 56.654
          - type: ndcg_at_5
            value: 54.18300000000001
          - type: precision_at_1
            value: 74.25
          - type: precision_at_10
            value: 42.699999999999996
          - type: precision_at_100
            value: 13.675
          - type: precision_at_1000
            value: 2.664
          - type: precision_at_3
            value: 60.5
          - type: precision_at_5
            value: 52.800000000000004
          - type: recall_at_1
            value: 9.953
          - type: recall_at_10
            value: 30.253999999999998
          - type: recall_at_100
            value: 62.516000000000005
          - type: recall_at_1000
            value: 84.163
          - type: recall_at_3
            value: 18.13
          - type: recall_at_5
            value: 22.771
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 79.455
          - type: f1
            value: 74.16798697647569
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 87.531
          - type: map_at_10
            value: 93.16799999999999
          - type: map_at_100
            value: 93.341
          - type: map_at_1000
            value: 93.349
          - type: map_at_3
            value: 92.444
          - type: map_at_5
            value: 92.865
          - type: mrr_at_1
            value: 94.014
          - type: mrr_at_10
            value: 96.761
          - type: mrr_at_100
            value: 96.762
          - type: mrr_at_1000
            value: 96.762
          - type: mrr_at_3
            value: 96.672
          - type: mrr_at_5
            value: 96.736
          - type: ndcg_at_1
            value: 94.014
          - type: ndcg_at_10
            value: 95.112
          - type: ndcg_at_100
            value: 95.578
          - type: ndcg_at_1000
            value: 95.68900000000001
          - type: ndcg_at_3
            value: 94.392
          - type: ndcg_at_5
            value: 94.72500000000001
          - type: precision_at_1
            value: 94.014
          - type: precision_at_10
            value: 11.065
          - type: precision_at_100
            value: 1.157
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 35.259
          - type: precision_at_5
            value: 21.599
          - type: recall_at_1
            value: 87.531
          - type: recall_at_10
            value: 97.356
          - type: recall_at_100
            value: 98.965
          - type: recall_at_1000
            value: 99.607
          - type: recall_at_3
            value: 95.312
          - type: recall_at_5
            value: 96.295
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 32.055
          - type: map_at_10
            value: 53.114
          - type: map_at_100
            value: 55.235
          - type: map_at_1000
            value: 55.345
          - type: map_at_3
            value: 45.854
          - type: map_at_5
            value: 50.025
          - type: mrr_at_1
            value: 60.34
          - type: mrr_at_10
            value: 68.804
          - type: mrr_at_100
            value: 69.309
          - type: mrr_at_1000
            value: 69.32199999999999
          - type: mrr_at_3
            value: 66.40899999999999
          - type: mrr_at_5
            value: 67.976
          - type: ndcg_at_1
            value: 60.34
          - type: ndcg_at_10
            value: 62.031000000000006
          - type: ndcg_at_100
            value: 68.00500000000001
          - type: ndcg_at_1000
            value: 69.286
          - type: ndcg_at_3
            value: 56.355999999999995
          - type: ndcg_at_5
            value: 58.687
          - type: precision_at_1
            value: 60.34
          - type: precision_at_10
            value: 17.176
          - type: precision_at_100
            value: 2.36
          - type: precision_at_1000
            value: 0.259
          - type: precision_at_3
            value: 37.14
          - type: precision_at_5
            value: 27.809
          - type: recall_at_1
            value: 32.055
          - type: recall_at_10
            value: 70.91
          - type: recall_at_100
            value: 91.83
          - type: recall_at_1000
            value: 98.871
          - type: recall_at_3
            value: 51.202999999999996
          - type: recall_at_5
            value: 60.563
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 43.68
          - type: map_at_10
            value: 64.389
          - type: map_at_100
            value: 65.24
          - type: map_at_1000
            value: 65.303
          - type: map_at_3
            value: 61.309000000000005
          - type: map_at_5
            value: 63.275999999999996
          - type: mrr_at_1
            value: 87.36
          - type: mrr_at_10
            value: 91.12
          - type: mrr_at_100
            value: 91.227
          - type: mrr_at_1000
            value: 91.229
          - type: mrr_at_3
            value: 90.57600000000001
          - type: mrr_at_5
            value: 90.912
          - type: ndcg_at_1
            value: 87.36
          - type: ndcg_at_10
            value: 73.076
          - type: ndcg_at_100
            value: 75.895
          - type: ndcg_at_1000
            value: 77.049
          - type: ndcg_at_3
            value: 68.929
          - type: ndcg_at_5
            value: 71.28
          - type: precision_at_1
            value: 87.36
          - type: precision_at_10
            value: 14.741000000000001
          - type: precision_at_100
            value: 1.694
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 43.043
          - type: precision_at_5
            value: 27.681
          - type: recall_at_1
            value: 43.68
          - type: recall_at_10
            value: 73.707
          - type: recall_at_100
            value: 84.7
          - type: recall_at_1000
            value: 92.309
          - type: recall_at_3
            value: 64.564
          - type: recall_at_5
            value: 69.203
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 96.75399999999999
          - type: ap
            value: 95.29389839242187
          - type: f1
            value: 96.75348377433475
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 25.176
          - type: map_at_10
            value: 38.598
          - type: map_at_100
            value: 39.707
          - type: map_at_1000
            value: 39.744
          - type: map_at_3
            value: 34.566
          - type: map_at_5
            value: 36.863
          - type: mrr_at_1
            value: 25.874000000000002
          - type: mrr_at_10
            value: 39.214
          - type: mrr_at_100
            value: 40.251
          - type: mrr_at_1000
            value: 40.281
          - type: mrr_at_3
            value: 35.291
          - type: mrr_at_5
            value: 37.545
          - type: ndcg_at_1
            value: 25.874000000000002
          - type: ndcg_at_10
            value: 45.98
          - type: ndcg_at_100
            value: 51.197
          - type: ndcg_at_1000
            value: 52.073
          - type: ndcg_at_3
            value: 37.785999999999994
          - type: ndcg_at_5
            value: 41.870000000000005
          - type: precision_at_1
            value: 25.874000000000002
          - type: precision_at_10
            value: 7.181
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 16.051000000000002
          - type: precision_at_5
            value: 11.713
          - type: recall_at_1
            value: 25.176
          - type: recall_at_10
            value: 68.67699999999999
          - type: recall_at_100
            value: 92.55
          - type: recall_at_1000
            value: 99.164
          - type: recall_at_3
            value: 46.372
          - type: recall_at_5
            value: 56.16
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 99.03784769721841
          - type: f1
            value: 98.97791641821495
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 91.88326493388054
          - type: f1
            value: 73.74809928034335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 85.41358439811701
          - type: f1
            value: 83.503679460639
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 89.77135171486215
          - type: f1
            value: 88.89843747468366
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 46.22695362087359
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 44.132372165849425
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 33.35680810650402
          - type: mrr
            value: 34.72625715637218
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 7.165000000000001
          - type: map_at_10
            value: 15.424
          - type: map_at_100
            value: 20.28
          - type: map_at_1000
            value: 22.065
          - type: map_at_3
            value: 11.236
          - type: map_at_5
            value: 13.025999999999998
          - type: mrr_at_1
            value: 51.702999999999996
          - type: mrr_at_10
            value: 59.965
          - type: mrr_at_100
            value: 60.667
          - type: mrr_at_1000
            value: 60.702999999999996
          - type: mrr_at_3
            value: 58.772000000000006
          - type: mrr_at_5
            value: 59.267
          - type: ndcg_at_1
            value: 49.536
          - type: ndcg_at_10
            value: 40.6
          - type: ndcg_at_100
            value: 37.848
          - type: ndcg_at_1000
            value: 46.657
          - type: ndcg_at_3
            value: 46.117999999999995
          - type: ndcg_at_5
            value: 43.619
          - type: precision_at_1
            value: 51.393
          - type: precision_at_10
            value: 30.31
          - type: precision_at_100
            value: 9.972
          - type: precision_at_1000
            value: 2.329
          - type: precision_at_3
            value: 43.137
          - type: precision_at_5
            value: 37.585
          - type: recall_at_1
            value: 7.165000000000001
          - type: recall_at_10
            value: 19.689999999999998
          - type: recall_at_100
            value: 39.237
          - type: recall_at_1000
            value: 71.417
          - type: recall_at_3
            value: 12.247
          - type: recall_at_5
            value: 14.902999999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 42.653999999999996
          - type: map_at_10
            value: 59.611999999999995
          - type: map_at_100
            value: 60.32300000000001
          - type: map_at_1000
            value: 60.336
          - type: map_at_3
            value: 55.584999999999994
          - type: map_at_5
            value: 58.19
          - type: mrr_at_1
            value: 47.683
          - type: mrr_at_10
            value: 62.06700000000001
          - type: mrr_at_100
            value: 62.537
          - type: mrr_at_1000
            value: 62.544999999999995
          - type: mrr_at_3
            value: 59.178
          - type: mrr_at_5
            value: 61.034
          - type: ndcg_at_1
            value: 47.654
          - type: ndcg_at_10
            value: 67.001
          - type: ndcg_at_100
            value: 69.73899999999999
          - type: ndcg_at_1000
            value: 69.986
          - type: ndcg_at_3
            value: 59.95700000000001
          - type: ndcg_at_5
            value: 64.025
          - type: precision_at_1
            value: 47.654
          - type: precision_at_10
            value: 10.367999999999999
          - type: precision_at_100
            value: 1.192
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 26.651000000000003
          - type: precision_at_5
            value: 18.459
          - type: recall_at_1
            value: 42.653999999999996
          - type: recall_at_10
            value: 86.619
          - type: recall_at_100
            value: 98.04899999999999
          - type: recall_at_1000
            value: 99.812
          - type: recall_at_3
            value: 68.987
          - type: recall_at_5
            value: 78.158
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 72.538
          - type: map_at_10
            value: 86.702
          - type: map_at_100
            value: 87.31
          - type: map_at_1000
            value: 87.323
          - type: map_at_3
            value: 83.87
          - type: map_at_5
            value: 85.682
          - type: mrr_at_1
            value: 83.31
          - type: mrr_at_10
            value: 89.225
          - type: mrr_at_100
            value: 89.30399999999999
          - type: mrr_at_1000
            value: 89.30399999999999
          - type: mrr_at_3
            value: 88.44300000000001
          - type: mrr_at_5
            value: 89.005
          - type: ndcg_at_1
            value: 83.32000000000001
          - type: ndcg_at_10
            value: 90.095
          - type: ndcg_at_100
            value: 91.12
          - type: ndcg_at_1000
            value: 91.179
          - type: ndcg_at_3
            value: 87.606
          - type: ndcg_at_5
            value: 89.031
          - type: precision_at_1
            value: 83.32000000000001
          - type: precision_at_10
            value: 13.641
          - type: precision_at_100
            value: 1.541
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.377
          - type: precision_at_5
            value: 25.162000000000003
          - type: recall_at_1
            value: 72.538
          - type: recall_at_10
            value: 96.47200000000001
          - type: recall_at_100
            value: 99.785
          - type: recall_at_1000
            value: 99.99900000000001
          - type: recall_at_3
            value: 89.278
          - type: recall_at_5
            value: 93.367
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 73.55219145406065
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 74.13437105242755
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.873
          - type: map_at_10
            value: 17.944
          - type: map_at_100
            value: 21.171
          - type: map_at_1000
            value: 21.528
          - type: map_at_3
            value: 12.415
          - type: map_at_5
            value: 15.187999999999999
          - type: mrr_at_1
            value: 33.800000000000004
          - type: mrr_at_10
            value: 46.455
          - type: mrr_at_100
            value: 47.378
          - type: mrr_at_1000
            value: 47.394999999999996
          - type: mrr_at_3
            value: 42.367
          - type: mrr_at_5
            value: 44.972
          - type: ndcg_at_1
            value: 33.800000000000004
          - type: ndcg_at_10
            value: 28.907
          - type: ndcg_at_100
            value: 39.695
          - type: ndcg_at_1000
            value: 44.582
          - type: ndcg_at_3
            value: 26.949
          - type: ndcg_at_5
            value: 23.988
          - type: precision_at_1
            value: 33.800000000000004
          - type: precision_at_10
            value: 15.079999999999998
          - type: precision_at_100
            value: 3.056
          - type: precision_at_1000
            value: 0.42100000000000004
          - type: precision_at_3
            value: 25.167
          - type: precision_at_5
            value: 21.26
          - type: recall_at_1
            value: 6.873
          - type: recall_at_10
            value: 30.568
          - type: recall_at_100
            value: 62.062
          - type: recall_at_1000
            value: 85.37700000000001
          - type: recall_at_3
            value: 15.312999999999999
          - type: recall_at_5
            value: 21.575
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.37009118256057
          - type: cos_sim_spearman
            value: 79.27986395671529
          - type: euclidean_pearson
            value: 79.18037715442115
          - type: euclidean_spearman
            value: 79.28004791561621
          - type: manhattan_pearson
            value: 79.34062972800541
          - type: manhattan_spearman
            value: 79.43106695543402
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.48474767383833
          - type: cos_sim_spearman
            value: 79.54505388752513
          - type: euclidean_pearson
            value: 83.43282704179565
          - type: euclidean_spearman
            value: 79.54579919925405
          - type: manhattan_pearson
            value: 83.77564492427952
          - type: manhattan_spearman
            value: 79.84558396989286
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 88.803698035802
          - type: cos_sim_spearman
            value: 88.83451367754881
          - type: euclidean_pearson
            value: 88.28939285711628
          - type: euclidean_spearman
            value: 88.83528996073112
          - type: manhattan_pearson
            value: 88.28017412671795
          - type: manhattan_spearman
            value: 88.9228828016344
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 85.27469288153428
          - type: cos_sim_spearman
            value: 83.87477064876288
          - type: euclidean_pearson
            value: 84.2601737035379
          - type: euclidean_spearman
            value: 83.87431082479074
          - type: manhattan_pearson
            value: 84.3621547772745
          - type: manhattan_spearman
            value: 84.12094375000423
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.12749863201587
          - type: cos_sim_spearman
            value: 88.54287568368565
          - type: euclidean_pearson
            value: 87.90429700607999
          - type: euclidean_spearman
            value: 88.5437689576261
          - type: manhattan_pearson
            value: 88.19276653356833
          - type: manhattan_spearman
            value: 88.99995393814679
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.68398747560902
          - type: cos_sim_spearman
            value: 86.48815303460574
          - type: euclidean_pearson
            value: 85.52356631237954
          - type: euclidean_spearman
            value: 86.486391949551
          - type: manhattan_pearson
            value: 85.67267981761788
          - type: manhattan_spearman
            value: 86.7073696332485
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.9057107443124
          - type: cos_sim_spearman
            value: 88.7312168757697
          - type: euclidean_pearson
            value: 88.72810439714794
          - type: euclidean_spearman
            value: 88.71976185854771
          - type: manhattan_pearson
            value: 88.50433745949111
          - type: manhattan_spearman
            value: 88.51726175544195
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 67.59391795109886
          - type: cos_sim_spearman
            value: 66.87613008631367
          - type: euclidean_pearson
            value: 69.23198488262217
          - type: euclidean_spearman
            value: 66.85427723013692
          - type: manhattan_pearson
            value: 69.50730124841084
          - type: manhattan_spearman
            value: 67.10404669820792
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.0820605344619
          - type: cos_sim_spearman
            value: 86.8518089863434
          - type: euclidean_pearson
            value: 86.31087134689284
          - type: euclidean_spearman
            value: 86.8518520517941
          - type: manhattan_pearson
            value: 86.47203796160612
          - type: manhattan_spearman
            value: 87.1080149734421
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 89.09255369305481
          - type: mrr
            value: 97.10323445617563
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 61.260999999999996
          - type: map_at_10
            value: 74.043
          - type: map_at_100
            value: 74.37700000000001
          - type: map_at_1000
            value: 74.384
          - type: map_at_3
            value: 71.222
          - type: map_at_5
            value: 72.875
          - type: mrr_at_1
            value: 64.333
          - type: mrr_at_10
            value: 74.984
          - type: mrr_at_100
            value: 75.247
          - type: mrr_at_1000
            value: 75.25500000000001
          - type: mrr_at_3
            value: 73.167
          - type: mrr_at_5
            value: 74.35000000000001
          - type: ndcg_at_1
            value: 64.333
          - type: ndcg_at_10
            value: 79.06
          - type: ndcg_at_100
            value: 80.416
          - type: ndcg_at_1000
            value: 80.55600000000001
          - type: ndcg_at_3
            value: 74.753
          - type: ndcg_at_5
            value: 76.97500000000001
          - type: precision_at_1
            value: 64.333
          - type: precision_at_10
            value: 10.567
          - type: precision_at_100
            value: 1.1199999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 29.889
          - type: precision_at_5
            value: 19.533
          - type: recall_at_1
            value: 61.260999999999996
          - type: recall_at_10
            value: 93.167
          - type: recall_at_100
            value: 99
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 81.667
          - type: recall_at_5
            value: 87.394
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.71980198019801
          - type: cos_sim_ap
            value: 92.81616007802704
          - type: cos_sim_f1
            value: 85.17548454688318
          - type: cos_sim_precision
            value: 89.43894389438944
          - type: cos_sim_recall
            value: 81.3
          - type: dot_accuracy
            value: 99.71980198019801
          - type: dot_ap
            value: 92.81398760591358
          - type: dot_f1
            value: 85.17548454688318
          - type: dot_precision
            value: 89.43894389438944
          - type: dot_recall
            value: 81.3
          - type: euclidean_accuracy
            value: 99.71980198019801
          - type: euclidean_ap
            value: 92.81560637245072
          - type: euclidean_f1
            value: 85.17548454688318
          - type: euclidean_precision
            value: 89.43894389438944
          - type: euclidean_recall
            value: 81.3
          - type: manhattan_accuracy
            value: 99.73069306930694
          - type: manhattan_ap
            value: 93.14005487480794
          - type: manhattan_f1
            value: 85.56263269639068
          - type: manhattan_precision
            value: 91.17647058823529
          - type: manhattan_recall
            value: 80.60000000000001
          - type: max_accuracy
            value: 99.73069306930694
          - type: max_ap
            value: 93.14005487480794
          - type: max_f1
            value: 85.56263269639068
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 79.86443362395185
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 49.40897096662564
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.66040806627947
          - type: mrr
            value: 56.58670475766064
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.51015090598575
          - type: cos_sim_spearman
            value: 31.35016454939226
          - type: dot_pearson
            value: 31.5150068731
          - type: dot_spearman
            value: 31.34790869023487
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.254
          - type: map_at_10
            value: 2.064
          - type: map_at_100
            value: 12.909
          - type: map_at_1000
            value: 31.761
          - type: map_at_3
            value: 0.738
          - type: map_at_5
            value: 1.155
          - type: mrr_at_1
            value: 96
          - type: mrr_at_10
            value: 98
          - type: mrr_at_100
            value: 98
          - type: mrr_at_1000
            value: 98
          - type: mrr_at_3
            value: 98
          - type: mrr_at_5
            value: 98
          - type: ndcg_at_1
            value: 93
          - type: ndcg_at_10
            value: 82.258
          - type: ndcg_at_100
            value: 64.34
          - type: ndcg_at_1000
            value: 57.912
          - type: ndcg_at_3
            value: 90.827
          - type: ndcg_at_5
            value: 86.79
          - type: precision_at_1
            value: 96
          - type: precision_at_10
            value: 84.8
          - type: precision_at_100
            value: 66
          - type: precision_at_1000
            value: 25.356
          - type: precision_at_3
            value: 94.667
          - type: precision_at_5
            value: 90.4
          - type: recall_at_1
            value: 0.254
          - type: recall_at_10
            value: 2.1950000000000003
          - type: recall_at_100
            value: 16.088
          - type: recall_at_1000
            value: 54.559000000000005
          - type: recall_at_3
            value: 0.75
          - type: recall_at_5
            value: 1.191
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 2.976
          - type: map_at_10
            value: 11.389000000000001
          - type: map_at_100
            value: 18.429000000000002
          - type: map_at_1000
            value: 20.113
          - type: map_at_3
            value: 6.483
          - type: map_at_5
            value: 8.770999999999999
          - type: mrr_at_1
            value: 40.816
          - type: mrr_at_10
            value: 58.118
          - type: mrr_at_100
            value: 58.489999999999995
          - type: mrr_at_1000
            value: 58.489999999999995
          - type: mrr_at_3
            value: 53.061
          - type: mrr_at_5
            value: 57.041
          - type: ndcg_at_1
            value: 40.816
          - type: ndcg_at_10
            value: 30.567
          - type: ndcg_at_100
            value: 42.44
          - type: ndcg_at_1000
            value: 53.480000000000004
          - type: ndcg_at_3
            value: 36.016
          - type: ndcg_at_5
            value: 34.257
          - type: precision_at_1
            value: 42.857
          - type: precision_at_10
            value: 25.714
          - type: precision_at_100
            value: 8.429
          - type: precision_at_1000
            value: 1.5939999999999999
          - type: precision_at_3
            value: 36.735
          - type: precision_at_5
            value: 33.878
          - type: recall_at_1
            value: 2.976
          - type: recall_at_10
            value: 17.854999999999997
          - type: recall_at_100
            value: 51.833
          - type: recall_at_1000
            value: 86.223
          - type: recall_at_3
            value: 7.887
          - type: recall_at_5
            value: 12.026
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 85.1174
          - type: ap
            value: 30.169441069345748
          - type: f1
            value: 69.79254701873245
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 72.58347481607245
          - type: f1
            value: 72.74877295564937
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.90586138221305
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.35769207844072
          - type: cos_sim_ap
            value: 77.9645072410354
          - type: cos_sim_f1
            value: 71.32352941176471
          - type: cos_sim_precision
            value: 66.5903890160183
          - type: cos_sim_recall
            value: 76.78100263852242
          - type: dot_accuracy
            value: 87.37557370209214
          - type: dot_ap
            value: 77.96250046429908
          - type: dot_f1
            value: 71.28932757557064
          - type: dot_precision
            value: 66.95249130938586
          - type: dot_recall
            value: 76.22691292875989
          - type: euclidean_accuracy
            value: 87.35173153722357
          - type: euclidean_ap
            value: 77.96520460741593
          - type: euclidean_f1
            value: 71.32470733210104
          - type: euclidean_precision
            value: 66.91329479768785
          - type: euclidean_recall
            value: 76.35883905013192
          - type: manhattan_accuracy
            value: 87.25636287774931
          - type: manhattan_ap
            value: 77.77752485611796
          - type: manhattan_f1
            value: 71.18148599269183
          - type: manhattan_precision
            value: 66.10859728506787
          - type: manhattan_recall
            value: 77.0976253298153
          - type: max_accuracy
            value: 87.37557370209214
          - type: max_ap
            value: 77.96520460741593
          - type: max_f1
            value: 71.32470733210104
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.38176737687739
          - type: cos_sim_ap
            value: 86.58811861657401
          - type: cos_sim_f1
            value: 79.09430644097604
          - type: cos_sim_precision
            value: 75.45085977911366
          - type: cos_sim_recall
            value: 83.10748383122882
          - type: dot_accuracy
            value: 89.38370784336554
          - type: dot_ap
            value: 86.58840606004333
          - type: dot_f1
            value: 79.10179860068133
          - type: dot_precision
            value: 75.44546153308643
          - type: dot_recall
            value: 83.13058207576223
          - type: euclidean_accuracy
            value: 89.38564830985369
          - type: euclidean_ap
            value: 86.58820721061164
          - type: euclidean_f1
            value: 79.09070942235888
          - type: euclidean_precision
            value: 75.38729937194697
          - type: euclidean_recall
            value: 83.17677856482906
          - type: manhattan_accuracy
            value: 89.40699344122326
          - type: manhattan_ap
            value: 86.60631843011362
          - type: manhattan_f1
            value: 79.14949970570925
          - type: manhattan_precision
            value: 75.78191039729502
          - type: manhattan_recall
            value: 82.83030489682784
          - type: max_accuracy
            value: 89.40699344122326
          - type: max_ap
            value: 86.60631843011362
          - type: max_f1
            value: 79.14949970570925
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 65.58442135663871
          - type: cos_sim_spearman
            value: 72.2538631361313
          - type: euclidean_pearson
            value: 70.97255486607429
          - type: euclidean_spearman
            value: 72.25374250228647
          - type: manhattan_pearson
            value: 70.83250199989911
          - type: manhattan_spearman
            value: 72.14819496536272
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 59.99478404929932
          - type: cos_sim_spearman
            value: 62.61836216999812
          - type: euclidean_pearson
            value: 66.86429811933593
          - type: euclidean_spearman
            value: 62.6183520374191
          - type: manhattan_pearson
            value: 66.8063778911633
          - type: manhattan_spearman
            value: 62.569607573241115
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 53.98400000000001
          - type: f1
            value: 51.21447361350723
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 79.11941660686553
          - type: cos_sim_spearman
            value: 81.25029594540435
          - type: euclidean_pearson
            value: 82.06973504238826
          - type: euclidean_spearman
            value: 81.2501989488524
          - type: manhattan_pearson
            value: 82.10094630392753
          - type: manhattan_spearman
            value: 81.27987244392389
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 47.07270168705156
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 45.98511703185043
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 88.19895157194931
          - type: mrr
            value: 90.21424603174603
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 88.03317320980119
          - type: mrr
            value: 89.9461507936508
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 29.037000000000003
          - type: map_at_10
            value: 42.001
          - type: map_at_100
            value: 43.773
          - type: map_at_1000
            value: 43.878
          - type: map_at_3
            value: 37.637
          - type: map_at_5
            value: 40.034
          - type: mrr_at_1
            value: 43.136
          - type: mrr_at_10
            value: 51.158
          - type: mrr_at_100
            value: 52.083
          - type: mrr_at_1000
            value: 52.12
          - type: mrr_at_3
            value: 48.733
          - type: mrr_at_5
            value: 50.025
          - type: ndcg_at_1
            value: 43.136
          - type: ndcg_at_10
            value: 48.685
          - type: ndcg_at_100
            value: 55.513
          - type: ndcg_at_1000
            value: 57.242000000000004
          - type: ndcg_at_3
            value: 43.329
          - type: ndcg_at_5
            value: 45.438
          - type: precision_at_1
            value: 43.136
          - type: precision_at_10
            value: 10.56
          - type: precision_at_100
            value: 1.6129999999999998
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 24.064
          - type: precision_at_5
            value: 17.269000000000002
          - type: recall_at_1
            value: 29.037000000000003
          - type: recall_at_10
            value: 59.245000000000005
          - type: recall_at_100
            value: 87.355
          - type: recall_at_1000
            value: 98.74000000000001
          - type: recall_at_3
            value: 42.99
          - type: recall_at_5
            value: 49.681999999999995
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 82.68190018039687
          - type: cos_sim_ap
            value: 90.18017125327886
          - type: cos_sim_f1
            value: 83.64080906868193
          - type: cos_sim_precision
            value: 79.7076890489303
          - type: cos_sim_recall
            value: 87.98223053542202
          - type: dot_accuracy
            value: 82.68190018039687
          - type: dot_ap
            value: 90.18782350103646
          - type: dot_f1
            value: 83.64242087729039
          - type: dot_precision
            value: 79.65313028764805
          - type: dot_recall
            value: 88.05237315875614
          - type: euclidean_accuracy
            value: 82.68190018039687
          - type: euclidean_ap
            value: 90.1801957900632
          - type: euclidean_f1
            value: 83.63636363636364
          - type: euclidean_precision
            value: 79.52772506852203
          - type: euclidean_recall
            value: 88.19265840542437
          - type: manhattan_accuracy
            value: 82.14070956103427
          - type: manhattan_ap
            value: 89.96178420101427
          - type: manhattan_f1
            value: 83.21087838578791
          - type: manhattan_precision
            value: 78.35605121850475
          - type: manhattan_recall
            value: 88.70703764320785
          - type: max_accuracy
            value: 82.68190018039687
          - type: max_ap
            value: 90.18782350103646
          - type: max_f1
            value: 83.64242087729039
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 72.234
          - type: map_at_10
            value: 80.10000000000001
          - type: map_at_100
            value: 80.36
          - type: map_at_1000
            value: 80.363
          - type: map_at_3
            value: 78.315
          - type: map_at_5
            value: 79.607
          - type: mrr_at_1
            value: 72.392
          - type: mrr_at_10
            value: 80.117
          - type: mrr_at_100
            value: 80.36999999999999
          - type: mrr_at_1000
            value: 80.373
          - type: mrr_at_3
            value: 78.469
          - type: mrr_at_5
            value: 79.633
          - type: ndcg_at_1
            value: 72.392
          - type: ndcg_at_10
            value: 83.651
          - type: ndcg_at_100
            value: 84.749
          - type: ndcg_at_1000
            value: 84.83000000000001
          - type: ndcg_at_3
            value: 80.253
          - type: ndcg_at_5
            value: 82.485
          - type: precision_at_1
            value: 72.392
          - type: precision_at_10
            value: 9.557
          - type: precision_at_100
            value: 1.004
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 28.732000000000003
          - type: precision_at_5
            value: 18.377
          - type: recall_at_1
            value: 72.234
          - type: recall_at_10
            value: 94.573
          - type: recall_at_100
            value: 99.368
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 85.669
          - type: recall_at_5
            value: 91.01700000000001
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 26.173999999999996
          - type: map_at_10
            value: 80.04
          - type: map_at_100
            value: 82.94500000000001
          - type: map_at_1000
            value: 82.98100000000001
          - type: map_at_3
            value: 55.562999999999995
          - type: map_at_5
            value: 69.89800000000001
          - type: mrr_at_1
            value: 89.5
          - type: mrr_at_10
            value: 92.996
          - type: mrr_at_100
            value: 93.06400000000001
          - type: mrr_at_1000
            value: 93.065
          - type: mrr_at_3
            value: 92.658
          - type: mrr_at_5
            value: 92.84599999999999
          - type: ndcg_at_1
            value: 89.5
          - type: ndcg_at_10
            value: 87.443
          - type: ndcg_at_100
            value: 90.253
          - type: ndcg_at_1000
            value: 90.549
          - type: ndcg_at_3
            value: 85.874
          - type: ndcg_at_5
            value: 84.842
          - type: precision_at_1
            value: 89.5
          - type: precision_at_10
            value: 41.805
          - type: precision_at_100
            value: 4.827
          - type: precision_at_1000
            value: 0.49
          - type: precision_at_3
            value: 76.85
          - type: precision_at_5
            value: 64.8
          - type: recall_at_1
            value: 26.173999999999996
          - type: recall_at_10
            value: 89.101
          - type: recall_at_100
            value: 98.08099999999999
          - type: recall_at_1000
            value: 99.529
          - type: recall_at_3
            value: 57.902
          - type: recall_at_5
            value: 74.602
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 56.10000000000001
          - type: map_at_10
            value: 66.15299999999999
          - type: map_at_100
            value: 66.625
          - type: map_at_1000
            value: 66.636
          - type: map_at_3
            value: 63.632999999999996
          - type: map_at_5
            value: 65.293
          - type: mrr_at_1
            value: 56.10000000000001
          - type: mrr_at_10
            value: 66.15299999999999
          - type: mrr_at_100
            value: 66.625
          - type: mrr_at_1000
            value: 66.636
          - type: mrr_at_3
            value: 63.632999999999996
          - type: mrr_at_5
            value: 65.293
          - type: ndcg_at_1
            value: 56.10000000000001
          - type: ndcg_at_10
            value: 71.146
          - type: ndcg_at_100
            value: 73.27799999999999
          - type: ndcg_at_1000
            value: 73.529
          - type: ndcg_at_3
            value: 66.09
          - type: ndcg_at_5
            value: 69.08999999999999
          - type: precision_at_1
            value: 56.10000000000001
          - type: precision_at_10
            value: 8.68
          - type: precision_at_100
            value: 0.964
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24.4
          - type: precision_at_5
            value: 16.1
          - type: recall_at_1
            value: 56.10000000000001
          - type: recall_at_10
            value: 86.8
          - type: recall_at_100
            value: 96.39999999999999
          - type: recall_at_1000
            value: 98.3
          - type: recall_at_3
            value: 73.2
          - type: recall_at_5
            value: 80.5
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 54.52096960369373
          - type: f1
            value: 40.930845295808695
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 86.51031894934334
          - type: ap
            value: 55.9516014323483
          - type: f1
            value: 81.54813679326381
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 69.67437838574276
          - type: cos_sim_spearman
            value: 73.81314174653045
          - type: euclidean_pearson
            value: 72.63430276680275
          - type: euclidean_spearman
            value: 73.81358736777001
          - type: manhattan_pearson
            value: 72.58743833842829
          - type: manhattan_spearman
            value: 73.7590419009179
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 31.648613483640254
          - type: mrr
            value: 30.37420634920635
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 73.28099999999999
          - type: map_at_10
            value: 81.977
          - type: map_at_100
            value: 82.222
          - type: map_at_1000
            value: 82.22699999999999
          - type: map_at_3
            value: 80.441
          - type: map_at_5
            value: 81.46600000000001
          - type: mrr_at_1
            value: 75.673
          - type: mrr_at_10
            value: 82.41000000000001
          - type: mrr_at_100
            value: 82.616
          - type: mrr_at_1000
            value: 82.621
          - type: mrr_at_3
            value: 81.094
          - type: mrr_at_5
            value: 81.962
          - type: ndcg_at_1
            value: 75.673
          - type: ndcg_at_10
            value: 85.15599999999999
          - type: ndcg_at_100
            value: 86.151
          - type: ndcg_at_1000
            value: 86.26899999999999
          - type: ndcg_at_3
            value: 82.304
          - type: ndcg_at_5
            value: 84.009
          - type: precision_at_1
            value: 75.673
          - type: precision_at_10
            value: 10.042
          - type: precision_at_100
            value: 1.052
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 30.673000000000002
          - type: precision_at_5
            value: 19.326999999999998
          - type: recall_at_1
            value: 73.28099999999999
          - type: recall_at_10
            value: 94.446
          - type: recall_at_100
            value: 98.737
          - type: recall_at_1000
            value: 99.649
          - type: recall_at_3
            value: 86.984
          - type: recall_at_5
            value: 91.024
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 81.08607935440484
          - type: f1
            value: 78.24879986066307
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 86.05917955615332
          - type: f1
            value: 85.05279279434997
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 56.2
          - type: map_at_10
            value: 62.57899999999999
          - type: map_at_100
            value: 63.154999999999994
          - type: map_at_1000
            value: 63.193
          - type: map_at_3
            value: 61.217
          - type: map_at_5
            value: 62.012
          - type: mrr_at_1
            value: 56.3
          - type: mrr_at_10
            value: 62.629000000000005
          - type: mrr_at_100
            value: 63.205999999999996
          - type: mrr_at_1000
            value: 63.244
          - type: mrr_at_3
            value: 61.267
          - type: mrr_at_5
            value: 62.062
          - type: ndcg_at_1
            value: 56.2
          - type: ndcg_at_10
            value: 65.592
          - type: ndcg_at_100
            value: 68.657
          - type: ndcg_at_1000
            value: 69.671
          - type: ndcg_at_3
            value: 62.808
          - type: ndcg_at_5
            value: 64.24499999999999
          - type: precision_at_1
            value: 56.2
          - type: precision_at_10
            value: 7.5
          - type: precision_at_100
            value: 0.899
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 22.467000000000002
          - type: precision_at_5
            value: 14.180000000000001
          - type: recall_at_1
            value: 56.2
          - type: recall_at_10
            value: 75
          - type: recall_at_100
            value: 89.9
          - type: recall_at_1000
            value: 97.89999999999999
          - type: recall_at_3
            value: 67.4
          - type: recall_at_5
            value: 70.89999999999999
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 76.87666666666667
          - type: f1
            value: 76.7317686219665
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 79.64266377910124
          - type: cos_sim_ap
            value: 84.78274442344829
          - type: cos_sim_f1
            value: 81.16947472745292
          - type: cos_sim_precision
            value: 76.47058823529412
          - type: cos_sim_recall
            value: 86.48363252375924
          - type: dot_accuracy
            value: 79.64266377910124
          - type: dot_ap
            value: 84.7851404063692
          - type: dot_f1
            value: 81.16947472745292
          - type: dot_precision
            value: 76.47058823529412
          - type: dot_recall
            value: 86.48363252375924
          - type: euclidean_accuracy
            value: 79.64266377910124
          - type: euclidean_ap
            value: 84.78068373762378
          - type: euclidean_f1
            value: 81.14794656110837
          - type: euclidean_precision
            value: 76.35009310986965
          - type: euclidean_recall
            value: 86.58922914466737
          - type: manhattan_accuracy
            value: 79.48023822414727
          - type: manhattan_ap
            value: 84.72928897427576
          - type: manhattan_f1
            value: 81.32084770823064
          - type: manhattan_precision
            value: 76.24768946395564
          - type: manhattan_recall
            value: 87.11721224920802
          - type: max_accuracy
            value: 79.64266377910124
          - type: max_ap
            value: 84.7851404063692
          - type: max_f1
            value: 81.32084770823064
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 94.3
          - type: ap
            value: 92.8664032274438
          - type: f1
            value: 94.29311102997727
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 48.51392279882909
          - type: cos_sim_spearman
            value: 54.06338895994974
          - type: euclidean_pearson
            value: 52.58480559573412
          - type: euclidean_spearman
            value: 54.06417276612201
          - type: manhattan_pearson
            value: 52.69525121721343
          - type: manhattan_spearman
            value: 54.048147455389675
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 29.728387290757325
          - type: cos_sim_spearman
            value: 31.366121633635284
          - type: euclidean_pearson
            value: 29.14588368552961
          - type: euclidean_spearman
            value: 31.36764411112844
          - type: manhattan_pearson
            value: 29.63517350523121
          - type: manhattan_spearman
            value: 31.94157020583762
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 63.64868296271406
          - type: cos_sim_spearman
            value: 66.12800618164744
          - type: euclidean_pearson
            value: 63.21405767340238
          - type: euclidean_spearman
            value: 66.12786567790748
          - type: manhattan_pearson
            value: 64.04300276525848
          - type: manhattan_spearman
            value: 66.5066857145652
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 81.2302623912794
          - type: cos_sim_spearman
            value: 81.16833673266562
          - type: euclidean_pearson
            value: 79.47647843876024
          - type: euclidean_spearman
            value: 81.16944349524972
          - type: manhattan_pearson
            value: 79.84947238492208
          - type: manhattan_spearman
            value: 81.64626599410026
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 67.80129586475687
          - type: mrr
            value: 77.77402311635554
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 28.666999999999998
          - type: map_at_10
            value: 81.063
          - type: map_at_100
            value: 84.504
          - type: map_at_1000
            value: 84.552
          - type: map_at_3
            value: 56.897
          - type: map_at_5
            value: 70.073
          - type: mrr_at_1
            value: 92.087
          - type: mrr_at_10
            value: 94.132
          - type: mrr_at_100
            value: 94.19800000000001
          - type: mrr_at_1000
            value: 94.19999999999999
          - type: mrr_at_3
            value: 93.78999999999999
          - type: mrr_at_5
            value: 94.002
          - type: ndcg_at_1
            value: 92.087
          - type: ndcg_at_10
            value: 87.734
          - type: ndcg_at_100
            value: 90.736
          - type: ndcg_at_1000
            value: 91.184
          - type: ndcg_at_3
            value: 88.78
          - type: ndcg_at_5
            value: 87.676
          - type: precision_at_1
            value: 92.087
          - type: precision_at_10
            value: 43.46
          - type: precision_at_100
            value: 5.07
          - type: precision_at_1000
            value: 0.518
          - type: precision_at_3
            value: 77.49000000000001
          - type: precision_at_5
            value: 65.194
          - type: recall_at_1
            value: 28.666999999999998
          - type: recall_at_10
            value: 86.632
          - type: recall_at_100
            value: 96.646
          - type: recall_at_1000
            value: 98.917
          - type: recall_at_3
            value: 58.333999999999996
          - type: recall_at_5
            value: 72.974
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 52.971999999999994
          - type: f1
            value: 50.2898280984929
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 86.0797948663824
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 85.10759092255017
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 65.60000000000001
          - type: map_at_10
            value: 74.773
          - type: map_at_100
            value: 75.128
          - type: map_at_1000
            value: 75.136
          - type: map_at_3
            value: 73.05
          - type: map_at_5
            value: 74.13499999999999
          - type: mrr_at_1
            value: 65.60000000000001
          - type: mrr_at_10
            value: 74.773
          - type: mrr_at_100
            value: 75.128
          - type: mrr_at_1000
            value: 75.136
          - type: mrr_at_3
            value: 73.05
          - type: mrr_at_5
            value: 74.13499999999999
          - type: ndcg_at_1
            value: 65.60000000000001
          - type: ndcg_at_10
            value: 78.84299999999999
          - type: ndcg_at_100
            value: 80.40899999999999
          - type: ndcg_at_1000
            value: 80.57
          - type: ndcg_at_3
            value: 75.40599999999999
          - type: ndcg_at_5
            value: 77.351
          - type: precision_at_1
            value: 65.60000000000001
          - type: precision_at_10
            value: 9.139999999999999
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 27.400000000000002
          - type: precision_at_5
            value: 17.380000000000003
          - type: recall_at_1
            value: 65.60000000000001
          - type: recall_at_10
            value: 91.4
          - type: recall_at_100
            value: 98.4
          - type: recall_at_1000
            value: 99.6
          - type: recall_at_3
            value: 82.19999999999999
          - type: recall_at_5
            value: 86.9
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 89.47
          - type: ap
            value: 75.59561751845389
          - type: f1
            value: 87.95207751382563
      - dataset:
          config: default
          name: MTEB AlloProfClusteringP2P
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
          split: test
          type: lyon-nlp/alloprof
        metrics:
          - type: v_measure
            value: 76.05592323841036
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AlloProfClusteringS2S
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
          split: test
          type: lyon-nlp/alloprof
        metrics:
          - type: v_measure
            value: 64.51718058866508
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AlloprofReranking
          revision: 666fdacebe0291776e86f29345663dfaf80a0db9
          split: test
          type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
        metrics:
          - type: map
            value: 73.08278490943373
          - type: mrr
            value: 74.66561454570449
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB AlloprofRetrieval
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
          split: test
          type: lyon-nlp/alloprof
        metrics:
          - type: map_at_1
            value: 38.912
          - type: map_at_10
            value: 52.437999999999995
          - type: map_at_100
            value: 53.38
          - type: map_at_1000
            value: 53.427
          - type: map_at_3
            value: 48.879
          - type: map_at_5
            value: 50.934000000000005
          - type: mrr_at_1
            value: 44.085
          - type: mrr_at_10
            value: 55.337
          - type: mrr_at_100
            value: 56.016999999999996
          - type: mrr_at_1000
            value: 56.043
          - type: mrr_at_3
            value: 52.55499999999999
          - type: mrr_at_5
            value: 54.20399999999999
          - type: ndcg_at_1
            value: 44.085
          - type: ndcg_at_10
            value: 58.876
          - type: ndcg_at_100
            value: 62.714000000000006
          - type: ndcg_at_1000
            value: 63.721000000000004
          - type: ndcg_at_3
            value: 52.444
          - type: ndcg_at_5
            value: 55.692
          - type: precision_at_1
            value: 44.085
          - type: precision_at_10
            value: 9.21
          - type: precision_at_100
            value: 1.164
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_3
            value: 23.043
          - type: precision_at_5
            value: 15.898000000000001
          - type: recall_at_1
            value: 38.912
          - type: recall_at_10
            value: 75.577
          - type: recall_at_100
            value: 92.038
          - type: recall_at_1000
            value: 99.325
          - type: recall_at_3
            value: 58.592
          - type: recall_at_5
            value: 66.235
        task:
          type: Retrieval
      - dataset:
          config: fr
          name: MTEB AmazonReviewsClassification (fr)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 55.532000000000004
          - type: f1
            value: 52.5783943471605
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BSARDRetrieval
          revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
          split: test
          type: maastrichtlawtech/bsard
        metrics:
          - type: map_at_1
            value: 8.108
          - type: map_at_10
            value: 14.710999999999999
          - type: map_at_100
            value: 15.891
          - type: map_at_1000
            value: 15.983
          - type: map_at_3
            value: 12.237
          - type: map_at_5
            value: 13.679
          - type: mrr_at_1
            value: 8.108
          - type: mrr_at_10
            value: 14.710999999999999
          - type: mrr_at_100
            value: 15.891
          - type: mrr_at_1000
            value: 15.983
          - type: mrr_at_3
            value: 12.237
          - type: mrr_at_5
            value: 13.679
          - type: ndcg_at_1
            value: 8.108
          - type: ndcg_at_10
            value: 18.796
          - type: ndcg_at_100
            value: 25.098
          - type: ndcg_at_1000
            value: 27.951999999999998
          - type: ndcg_at_3
            value: 13.712
          - type: ndcg_at_5
            value: 16.309
          - type: precision_at_1
            value: 8.108
          - type: precision_at_10
            value: 3.198
          - type: precision_at_100
            value: 0.626
          - type: precision_at_1000
            value: 0.086
          - type: precision_at_3
            value: 6.006
          - type: precision_at_5
            value: 4.865
          - type: recall_at_1
            value: 8.108
          - type: recall_at_10
            value: 31.982
          - type: recall_at_100
            value: 62.613
          - type: recall_at_1000
            value: 86.036
          - type: recall_at_3
            value: 18.018
          - type: recall_at_5
            value: 24.324
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HALClusteringS2S
          revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
          split: test
          type: lyon-nlp/clustering-hal-s2s
        metrics:
          - type: v_measure
            value: 30.833269778867116
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MLSUMClusteringP2P
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
          split: test
          type: mlsum
        metrics:
          - type: v_measure
            value: 50.0281928004713
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MLSUMClusteringS2S
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
          split: test
          type: mlsum
        metrics:
          - type: v_measure
            value: 43.699961510636534
        task:
          type: Clustering
      - dataset:
          config: fr
          name: MTEB MTOPDomainClassification (fr)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 96.68963357344191
          - type: f1
            value: 96.45175170820961
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MTOPIntentClassification (fr)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 87.46946445349202
          - type: f1
            value: 65.79860440988624
        task:
          type: Classification
      - dataset:
          config: fra
          name: MTEB MasakhaNEWSClassification (fra)
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
          split: test
          type: masakhane/masakhanews
        metrics:
          - type: accuracy
            value: 82.60663507109005
          - type: f1
            value: 77.20462646604777
        task:
          type: Classification
      - dataset:
          config: fra
          name: MTEB MasakhaNEWSClusteringP2P (fra)
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
          split: test
          type: masakhane/masakhanews
        metrics:
          - type: v_measure
            value: 60.19311264967803
        task:
          type: Clustering
      - dataset:
          config: fra
          name: MTEB MasakhaNEWSClusteringS2S (fra)
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
          split: test
          type: masakhane/masakhanews
        metrics:
          - type: v_measure
            value: 63.6235764409785
        task:
          type: Clustering
      - dataset:
          config: fr
          name: MTEB MassiveIntentClassification (fr)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 81.65097511768661
          - type: f1
            value: 78.77796091490924
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MassiveScenarioClassification (fr)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 86.64425016812373
          - type: f1
            value: 85.4912728670017
        task:
          type: Classification
      - dataset:
          config: fr
          name: MTEB MintakaRetrieval (fr)
          revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
          split: test
          type: jinaai/mintakaqa
        metrics:
          - type: map_at_1
            value: 35.913000000000004
          - type: map_at_10
            value: 48.147
          - type: map_at_100
            value: 48.91
          - type: map_at_1000
            value: 48.949
          - type: map_at_3
            value: 45.269999999999996
          - type: map_at_5
            value: 47.115
          - type: mrr_at_1
            value: 35.913000000000004
          - type: mrr_at_10
            value: 48.147
          - type: mrr_at_100
            value: 48.91
          - type: mrr_at_1000
            value: 48.949
          - type: mrr_at_3
            value: 45.269999999999996
          - type: mrr_at_5
            value: 47.115
          - type: ndcg_at_1
            value: 35.913000000000004
          - type: ndcg_at_10
            value: 54.03
          - type: ndcg_at_100
            value: 57.839
          - type: ndcg_at_1000
            value: 58.925000000000004
          - type: ndcg_at_3
            value: 48.217999999999996
          - type: ndcg_at_5
            value: 51.56699999999999
          - type: precision_at_1
            value: 35.913000000000004
          - type: precision_at_10
            value: 7.244000000000001
          - type: precision_at_100
            value: 0.9039999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 18.905
          - type: precision_at_5
            value: 12.981000000000002
          - type: recall_at_1
            value: 35.913000000000004
          - type: recall_at_10
            value: 72.441
          - type: recall_at_100
            value: 90.41799999999999
          - type: recall_at_1000
            value: 99.099
          - type: recall_at_3
            value: 56.716
          - type: recall_at_5
            value: 64.90599999999999
        task:
          type: Retrieval
      - dataset:
          config: fr
          name: MTEB OpusparcusPC (fr)
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
          split: test
          type: GEM/opusparcus
        metrics:
          - type: cos_sim_accuracy
            value: 99.90069513406156
          - type: cos_sim_ap
            value: 100
          - type: cos_sim_f1
            value: 99.95032290114257
          - type: cos_sim_precision
            value: 100
          - type: cos_sim_recall
            value: 99.90069513406156
          - type: dot_accuracy
            value: 99.90069513406156
          - type: dot_ap
            value: 100
          - type: dot_f1
            value: 99.95032290114257
          - type: dot_precision
            value: 100
          - type: dot_recall
            value: 99.90069513406156
          - type: euclidean_accuracy
            value: 99.90069513406156
          - type: euclidean_ap
            value: 100
          - type: euclidean_f1
            value: 99.95032290114257
          - type: euclidean_precision
            value: 100
          - type: euclidean_recall
            value: 99.90069513406156
          - type: manhattan_accuracy
            value: 99.90069513406156
          - type: manhattan_ap
            value: 100
          - type: manhattan_f1
            value: 99.95032290114257
          - type: manhattan_precision
            value: 100
          - type: manhattan_recall
            value: 99.90069513406156
          - type: max_accuracy
            value: 99.90069513406156
          - type: max_ap
            value: 100
          - type: max_f1
            value: 99.95032290114257
        task:
          type: PairClassification
      - dataset:
          config: fr
          name: MTEB PawsX (fr)
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
          split: test
          type: paws-x
        metrics:
          - type: cos_sim_accuracy
            value: 75.25
          - type: cos_sim_ap
            value: 80.86376001270014
          - type: cos_sim_f1
            value: 73.65945437441204
          - type: cos_sim_precision
            value: 64.02289452166802
          - type: cos_sim_recall
            value: 86.71096345514951
          - type: dot_accuracy
            value: 75.25
          - type: dot_ap
            value: 80.93686107633002
          - type: dot_f1
            value: 73.65945437441204
          - type: dot_precision
            value: 64.02289452166802
          - type: dot_recall
            value: 86.71096345514951
          - type: euclidean_accuracy
            value: 75.25
          - type: euclidean_ap
            value: 80.86379136218862
          - type: euclidean_f1
            value: 73.65945437441204
          - type: euclidean_precision
            value: 64.02289452166802
          - type: euclidean_recall
            value: 86.71096345514951
          - type: manhattan_accuracy
            value: 75.3
          - type: manhattan_ap
            value: 80.87826606097734
          - type: manhattan_f1
            value: 73.68421052631581
          - type: manhattan_precision
            value: 64
          - type: manhattan_recall
            value: 86.82170542635659
          - type: max_accuracy
            value: 75.3
          - type: max_ap
            value: 80.93686107633002
          - type: max_f1
            value: 73.68421052631581
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB SICKFr
          revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
          split: test
          type: Lajavaness/SICK-fr
        metrics:
          - type: cos_sim_pearson
            value: 81.42349425981143
          - type: cos_sim_spearman
            value: 78.90454327031226
          - type: euclidean_pearson
            value: 78.39086497435166
          - type: euclidean_spearman
            value: 78.9046133980509
          - type: manhattan_pearson
            value: 78.63743094286502
          - type: manhattan_spearman
            value: 79.12136348449269
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STS22 (fr)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 81.452697919749
          - type: cos_sim_spearman
            value: 82.58116836039301
          - type: euclidean_pearson
            value: 81.04038478932786
          - type: euclidean_spearman
            value: 82.58116836039301
          - type: manhattan_pearson
            value: 81.37075396187771
          - type: manhattan_spearman
            value: 82.73678231355368
        task:
          type: STS
      - dataset:
          config: fr
          name: MTEB STSBenchmarkMultilingualSTS (fr)
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
          split: test
          type: stsb_multi_mt
        metrics:
          - type: cos_sim_pearson
            value: 85.7419764013806
          - type: cos_sim_spearman
            value: 85.46085808849622
          - type: euclidean_pearson
            value: 83.70449639870063
          - type: euclidean_spearman
            value: 85.46159013076233
          - type: manhattan_pearson
            value: 83.95259510313929
          - type: manhattan_spearman
            value: 85.8029724659458
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SummEvalFr
          revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
          split: test
          type: lyon-nlp/summarization-summeval-fr-p2p
        metrics:
          - type: cos_sim_pearson
            value: 32.61063271753325
          - type: cos_sim_spearman
            value: 31.454589417353603
          - type: dot_pearson
            value: 32.6106288643431
          - type: dot_spearman
            value: 31.454589417353603
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB SyntecReranking
          revision: b205c5084a0934ce8af14338bf03feb19499c84d
          split: test
          type: lyon-nlp/mteb-fr-reranking-syntec-s2p
        metrics:
          - type: map
            value: 84.31666666666666
          - type: mrr
            value: 84.31666666666666
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SyntecRetrieval
          revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
          split: test
          type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
        metrics:
          - type: map_at_1
            value: 63
          - type: map_at_10
            value: 73.471
          - type: map_at_100
            value: 73.87
          - type: map_at_1000
            value: 73.87
          - type: map_at_3
            value: 70.5
          - type: map_at_5
            value: 73.05
          - type: mrr_at_1
            value: 63
          - type: mrr_at_10
            value: 73.471
          - type: mrr_at_100
            value: 73.87
          - type: mrr_at_1000
            value: 73.87
          - type: mrr_at_3
            value: 70.5
          - type: mrr_at_5
            value: 73.05
          - type: ndcg_at_1
            value: 63
          - type: ndcg_at_10
            value: 78.255
          - type: ndcg_at_100
            value: 79.88
          - type: ndcg_at_1000
            value: 79.88
          - type: ndcg_at_3
            value: 72.702
          - type: ndcg_at_5
            value: 77.264
          - type: precision_at_1
            value: 63
          - type: precision_at_10
            value: 9.3
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 26.333000000000002
          - type: precision_at_5
            value: 18
          - type: recall_at_1
            value: 63
          - type: recall_at_10
            value: 93
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 79
          - type: recall_at_5
            value: 90
        task:
          type: Retrieval
      - dataset:
          config: fr
          name: MTEB XPQARetrieval (fr)
          revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
          split: test
          type: jinaai/xpqa
        metrics:
          - type: map_at_1
            value: 40.338
          - type: map_at_10
            value: 61.927
          - type: map_at_100
            value: 63.361999999999995
          - type: map_at_1000
            value: 63.405
          - type: map_at_3
            value: 55.479
          - type: map_at_5
            value: 59.732
          - type: mrr_at_1
            value: 63.551
          - type: mrr_at_10
            value: 71.006
          - type: mrr_at_100
            value: 71.501
          - type: mrr_at_1000
            value: 71.509
          - type: mrr_at_3
            value: 69.07
          - type: mrr_at_5
            value: 70.165
          - type: ndcg_at_1
            value: 63.551
          - type: ndcg_at_10
            value: 68.297
          - type: ndcg_at_100
            value: 73.13199999999999
          - type: ndcg_at_1000
            value: 73.751
          - type: ndcg_at_3
            value: 62.999
          - type: ndcg_at_5
            value: 64.89
          - type: precision_at_1
            value: 63.551
          - type: precision_at_10
            value: 15.661
          - type: precision_at_100
            value: 1.9789999999999999
          - type: precision_at_1000
            value: 0.207
          - type: precision_at_3
            value: 38.273
          - type: precision_at_5
            value: 27.61
          - type: recall_at_1
            value: 40.338
          - type: recall_at_10
            value: 77.267
          - type: recall_at_100
            value: 95.892
          - type: recall_at_1000
            value: 99.75500000000001
          - type: recall_at_3
            value: 60.36
          - type: recall_at_5
            value: 68.825
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB 8TagsClustering
          revision: None
          split: test
          type: PL-MTEB/8tags-clustering
        metrics:
          - type: v_measure
            value: 51.36126303874126
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AllegroReviews
          revision: None
          split: test
          type: PL-MTEB/allegro-reviews
        metrics:
          - type: accuracy
            value: 67.13717693836979
          - type: f1
            value: 57.27609848003782
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna-PL
          revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
          split: test
          type: clarin-knext/arguana-pl
        metrics:
          - type: map_at_1
            value: 35.276999999999994
          - type: map_at_10
            value: 51.086
          - type: map_at_100
            value: 51.788000000000004
          - type: map_at_1000
            value: 51.791
          - type: map_at_3
            value: 46.147
          - type: map_at_5
            value: 49.078
          - type: mrr_at_1
            value: 35.917
          - type: mrr_at_10
            value: 51.315999999999995
          - type: mrr_at_100
            value: 52.018
          - type: mrr_at_1000
            value: 52.022
          - type: mrr_at_3
            value: 46.349000000000004
          - type: mrr_at_5
            value: 49.297000000000004
          - type: ndcg_at_1
            value: 35.276999999999994
          - type: ndcg_at_10
            value: 59.870999999999995
          - type: ndcg_at_100
            value: 62.590999999999994
          - type: ndcg_at_1000
            value: 62.661
          - type: ndcg_at_3
            value: 49.745
          - type: ndcg_at_5
            value: 55.067
          - type: precision_at_1
            value: 35.276999999999994
          - type: precision_at_10
            value: 8.791
          - type: precision_at_100
            value: 0.991
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.057
          - type: precision_at_5
            value: 14.637
          - type: recall_at_1
            value: 35.276999999999994
          - type: recall_at_10
            value: 87.909
          - type: recall_at_100
            value: 99.14699999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 60.171
          - type: recall_at_5
            value: 73.18599999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CBD
          revision: None
          split: test
          type: PL-MTEB/cbd
        metrics:
          - type: accuracy
            value: 78.03000000000002
          - type: ap
            value: 29.12548553897622
          - type: f1
            value: 66.54857118886073
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB CDSC-E
          revision: None
          split: test
          type: PL-MTEB/cdsce-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 89
          - type: cos_sim_ap
            value: 76.75437826834582
          - type: cos_sim_f1
            value: 66.4850136239782
          - type: cos_sim_precision
            value: 68.92655367231639
          - type: cos_sim_recall
            value: 64.21052631578948
          - type: dot_accuracy
            value: 89
          - type: dot_ap
            value: 76.75437826834582
          - type: dot_f1
            value: 66.4850136239782
          - type: dot_precision
            value: 68.92655367231639
          - type: dot_recall
            value: 64.21052631578948
          - type: euclidean_accuracy
            value: 89
          - type: euclidean_ap
            value: 76.75437826834582
          - type: euclidean_f1
            value: 66.4850136239782
          - type: euclidean_precision
            value: 68.92655367231639
          - type: euclidean_recall
            value: 64.21052631578948
          - type: manhattan_accuracy
            value: 89
          - type: manhattan_ap
            value: 76.66074220647083
          - type: manhattan_f1
            value: 66.47058823529412
          - type: manhattan_precision
            value: 75.33333333333333
          - type: manhattan_recall
            value: 59.473684210526315
          - type: max_accuracy
            value: 89
          - type: max_ap
            value: 76.75437826834582
          - type: max_f1
            value: 66.4850136239782
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CDSC-R
          revision: None
          split: test
          type: PL-MTEB/cdscr-sts
        metrics:
          - type: cos_sim_pearson
            value: 93.12903172428328
          - type: cos_sim_spearman
            value: 92.66381487060741
          - type: euclidean_pearson
            value: 90.37278396708922
          - type: euclidean_spearman
            value: 92.66381487060741
          - type: manhattan_pearson
            value: 90.32503296540962
          - type: manhattan_spearman
            value: 92.6902938354313
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB DBPedia-PL
          revision: 76afe41d9af165cc40999fcaa92312b8b012064a
          split: test
          type: clarin-knext/dbpedia-pl
        metrics:
          - type: map_at_1
            value: 8.83
          - type: map_at_10
            value: 18.326
          - type: map_at_100
            value: 26.496
          - type: map_at_1000
            value: 28.455000000000002
          - type: map_at_3
            value: 12.933
          - type: map_at_5
            value: 15.168000000000001
          - type: mrr_at_1
            value: 66
          - type: mrr_at_10
            value: 72.76700000000001
          - type: mrr_at_100
            value: 73.203
          - type: mrr_at_1000
            value: 73.219
          - type: mrr_at_3
            value: 71.458
          - type: mrr_at_5
            value: 72.246
          - type: ndcg_at_1
            value: 55.375
          - type: ndcg_at_10
            value: 41.3
          - type: ndcg_at_100
            value: 45.891
          - type: ndcg_at_1000
            value: 52.905
          - type: ndcg_at_3
            value: 46.472
          - type: ndcg_at_5
            value: 43.734
          - type: precision_at_1
            value: 66
          - type: precision_at_10
            value: 33.074999999999996
          - type: precision_at_100
            value: 11.094999999999999
          - type: precision_at_1000
            value: 2.374
          - type: precision_at_3
            value: 48.583
          - type: precision_at_5
            value: 42
          - type: recall_at_1
            value: 8.83
          - type: recall_at_10
            value: 22.587
          - type: recall_at_100
            value: 50.61600000000001
          - type: recall_at_1000
            value: 73.559
          - type: recall_at_3
            value: 13.688
          - type: recall_at_5
            value: 16.855
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA-PL
          revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
          split: test
          type: clarin-knext/fiqa-pl
        metrics:
          - type: map_at_1
            value: 20.587
          - type: map_at_10
            value: 33.095
          - type: map_at_100
            value: 35.24
          - type: map_at_1000
            value: 35.429
          - type: map_at_3
            value: 28.626
          - type: map_at_5
            value: 31.136999999999997
          - type: mrr_at_1
            value: 40.586
          - type: mrr_at_10
            value: 49.033
          - type: mrr_at_100
            value: 49.952999999999996
          - type: mrr_at_1000
            value: 49.992
          - type: mrr_at_3
            value: 46.553
          - type: mrr_at_5
            value: 48.035
          - type: ndcg_at_1
            value: 40.586
          - type: ndcg_at_10
            value: 41.046
          - type: ndcg_at_100
            value: 48.586
          - type: ndcg_at_1000
            value: 51.634
          - type: ndcg_at_3
            value: 36.773
          - type: ndcg_at_5
            value: 38.389
          - type: precision_at_1
            value: 40.586
          - type: precision_at_10
            value: 11.466
          - type: precision_at_100
            value: 1.909
          - type: precision_at_1000
            value: 0.245
          - type: precision_at_3
            value: 24.434
          - type: precision_at_5
            value: 18.426000000000002
          - type: recall_at_1
            value: 20.587
          - type: recall_at_10
            value: 47.986000000000004
          - type: recall_at_100
            value: 75.761
          - type: recall_at_1000
            value: 94.065
          - type: recall_at_3
            value: 33.339
          - type: recall_at_5
            value: 39.765
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA-PL
          revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
          split: test
          type: clarin-knext/hotpotqa-pl
        metrics:
          - type: map_at_1
            value: 40.878
          - type: map_at_10
            value: 58.775999999999996
          - type: map_at_100
            value: 59.632
          - type: map_at_1000
            value: 59.707
          - type: map_at_3
            value: 56.074
          - type: map_at_5
            value: 57.629
          - type: mrr_at_1
            value: 81.756
          - type: mrr_at_10
            value: 86.117
          - type: mrr_at_100
            value: 86.299
          - type: mrr_at_1000
            value: 86.30600000000001
          - type: mrr_at_3
            value: 85.345
          - type: mrr_at_5
            value: 85.832
          - type: ndcg_at_1
            value: 81.756
          - type: ndcg_at_10
            value: 67.608
          - type: ndcg_at_100
            value: 70.575
          - type: ndcg_at_1000
            value: 71.99600000000001
          - type: ndcg_at_3
            value: 63.723
          - type: ndcg_at_5
            value: 65.70700000000001
          - type: precision_at_1
            value: 81.756
          - type: precision_at_10
            value: 13.619
          - type: precision_at_100
            value: 1.5939999999999999
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 39.604
          - type: precision_at_5
            value: 25.332
          - type: recall_at_1
            value: 40.878
          - type: recall_at_10
            value: 68.096
          - type: recall_at_100
            value: 79.696
          - type: recall_at_1000
            value: 89.082
          - type: recall_at_3
            value: 59.406000000000006
          - type: recall_at_5
            value: 63.329
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MSMARCO-PL
          revision: 8634c07806d5cce3a6138e260e59b81760a0a640
          split: test
          type: clarin-knext/msmarco-pl
        metrics:
          - type: map_at_1
            value: 2.1839999999999997
          - type: map_at_10
            value: 11.346
          - type: map_at_100
            value: 30.325000000000003
          - type: map_at_1000
            value: 37.806
          - type: map_at_3
            value: 4.842
          - type: map_at_5
            value: 6.891
          - type: mrr_at_1
            value: 86.047
          - type: mrr_at_10
            value: 89.14699999999999
          - type: mrr_at_100
            value: 89.46600000000001
          - type: mrr_at_1000
            value: 89.46600000000001
          - type: mrr_at_3
            value: 89.14699999999999
          - type: mrr_at_5
            value: 89.14699999999999
          - type: ndcg_at_1
            value: 67.829
          - type: ndcg_at_10
            value: 62.222
          - type: ndcg_at_100
            value: 55.337
          - type: ndcg_at_1000
            value: 64.076
          - type: ndcg_at_3
            value: 68.12700000000001
          - type: ndcg_at_5
            value: 64.987
          - type: precision_at_1
            value: 86.047
          - type: precision_at_10
            value: 69.535
          - type: precision_at_100
            value: 32.93
          - type: precision_at_1000
            value: 6.6049999999999995
          - type: precision_at_3
            value: 79.845
          - type: precision_at_5
            value: 75.349
          - type: recall_at_1
            value: 2.1839999999999997
          - type: recall_at_10
            value: 12.866
          - type: recall_at_100
            value: 43.505
          - type: recall_at_1000
            value: 72.366
          - type: recall_at_3
            value: 4.947
          - type: recall_at_5
            value: 7.192
        task:
          type: Retrieval
      - dataset:
          config: pl
          name: MTEB MassiveIntentClassification (pl)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 80.75319435104238
          - type: f1
            value: 77.58961444860606
        task:
          type: Classification
      - dataset:
          config: pl
          name: MTEB MassiveScenarioClassification (pl)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 85.54472091459313
          - type: f1
            value: 84.29498563572106
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB NFCorpus-PL
          revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
          split: test
          type: clarin-knext/nfcorpus-pl
        metrics:
          - type: map_at_1
            value: 4.367
          - type: map_at_10
            value: 10.38
          - type: map_at_100
            value: 13.516
          - type: map_at_1000
            value: 14.982000000000001
          - type: map_at_3
            value: 7.367
          - type: map_at_5
            value: 8.59
          - type: mrr_at_1
            value: 41.486000000000004
          - type: mrr_at_10
            value: 48.886
          - type: mrr_at_100
            value: 49.657000000000004
          - type: mrr_at_1000
            value: 49.713
          - type: mrr_at_3
            value: 46.904
          - type: mrr_at_5
            value: 48.065000000000005
          - type: ndcg_at_1
            value: 40.402
          - type: ndcg_at_10
            value: 30.885
          - type: ndcg_at_100
            value: 28.393
          - type: ndcg_at_1000
            value: 37.428
          - type: ndcg_at_3
            value: 35.394999999999996
          - type: ndcg_at_5
            value: 33.391999999999996
          - type: precision_at_1
            value: 41.486000000000004
          - type: precision_at_10
            value: 23.437
          - type: precision_at_100
            value: 7.638
          - type: precision_at_1000
            value: 2.0389999999999997
          - type: precision_at_3
            value: 32.817
          - type: precision_at_5
            value: 28.915999999999997
          - type: recall_at_1
            value: 4.367
          - type: recall_at_10
            value: 14.655000000000001
          - type: recall_at_100
            value: 29.665999999999997
          - type: recall_at_1000
            value: 62.073
          - type: recall_at_3
            value: 8.51
          - type: recall_at_5
            value: 10.689
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ-PL
          revision: f171245712cf85dd4700b06bef18001578d0ca8d
          split: test
          type: clarin-knext/nq-pl
        metrics:
          - type: map_at_1
            value: 28.616000000000003
          - type: map_at_10
            value: 41.626000000000005
          - type: map_at_100
            value: 42.689
          - type: map_at_1000
            value: 42.733
          - type: map_at_3
            value: 37.729
          - type: map_at_5
            value: 39.879999999999995
          - type: mrr_at_1
            value: 32.068000000000005
          - type: mrr_at_10
            value: 44.029
          - type: mrr_at_100
            value: 44.87
          - type: mrr_at_1000
            value: 44.901
          - type: mrr_at_3
            value: 40.687
          - type: mrr_at_5
            value: 42.625
          - type: ndcg_at_1
            value: 32.068000000000005
          - type: ndcg_at_10
            value: 48.449999999999996
          - type: ndcg_at_100
            value: 53.13
          - type: ndcg_at_1000
            value: 54.186
          - type: ndcg_at_3
            value: 40.983999999999995
          - type: ndcg_at_5
            value: 44.628
          - type: precision_at_1
            value: 32.068000000000005
          - type: precision_at_10
            value: 7.9750000000000005
          - type: precision_at_100
            value: 1.061
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 18.404999999999998
          - type: precision_at_5
            value: 13.111
          - type: recall_at_1
            value: 28.616000000000003
          - type: recall_at_10
            value: 66.956
          - type: recall_at_100
            value: 87.657
          - type: recall_at_1000
            value: 95.548
          - type: recall_at_3
            value: 47.453
          - type: recall_at_5
            value: 55.87800000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB PAC
          revision: None
          split: test
          type: laugustyniak/abusive-clauses-pl
        metrics:
          - type: accuracy
            value: 69.04141326382856
          - type: ap
            value: 77.47589122111044
          - type: f1
            value: 66.6332277374775
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PPC
          revision: None
          split: test
          type: PL-MTEB/ppc-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 86.4
          - type: cos_sim_ap
            value: 94.1044939667201
          - type: cos_sim_f1
            value: 88.78048780487805
          - type: cos_sim_precision
            value: 87.22044728434504
          - type: cos_sim_recall
            value: 90.39735099337747
          - type: dot_accuracy
            value: 86.4
          - type: dot_ap
            value: 94.1044939667201
          - type: dot_f1
            value: 88.78048780487805
          - type: dot_precision
            value: 87.22044728434504
          - type: dot_recall
            value: 90.39735099337747
          - type: euclidean_accuracy
            value: 86.4
          - type: euclidean_ap
            value: 94.1044939667201
          - type: euclidean_f1
            value: 88.78048780487805
          - type: euclidean_precision
            value: 87.22044728434504
          - type: euclidean_recall
            value: 90.39735099337747
          - type: manhattan_accuracy
            value: 86.4
          - type: manhattan_ap
            value: 94.11438365697387
          - type: manhattan_f1
            value: 88.77968877968877
          - type: manhattan_precision
            value: 87.84440842787681
          - type: manhattan_recall
            value: 89.73509933774835
          - type: max_accuracy
            value: 86.4
          - type: max_ap
            value: 94.11438365697387
          - type: max_f1
            value: 88.78048780487805
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB PSC
          revision: None
          split: test
          type: PL-MTEB/psc-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 97.86641929499072
          - type: cos_sim_ap
            value: 99.36904211868182
          - type: cos_sim_f1
            value: 96.56203288490283
          - type: cos_sim_precision
            value: 94.72140762463343
          - type: cos_sim_recall
            value: 98.47560975609755
          - type: dot_accuracy
            value: 97.86641929499072
          - type: dot_ap
            value: 99.36904211868183
          - type: dot_f1
            value: 96.56203288490283
          - type: dot_precision
            value: 94.72140762463343
          - type: dot_recall
            value: 98.47560975609755
          - type: euclidean_accuracy
            value: 97.86641929499072
          - type: euclidean_ap
            value: 99.36904211868183
          - type: euclidean_f1
            value: 96.56203288490283
          - type: euclidean_precision
            value: 94.72140762463343
          - type: euclidean_recall
            value: 98.47560975609755
          - type: manhattan_accuracy
            value: 98.14471243042672
          - type: manhattan_ap
            value: 99.43359540492416
          - type: manhattan_f1
            value: 96.98795180722892
          - type: manhattan_precision
            value: 95.83333333333334
          - type: manhattan_recall
            value: 98.17073170731707
          - type: max_accuracy
            value: 98.14471243042672
          - type: max_ap
            value: 99.43359540492416
          - type: max_f1
            value: 96.98795180722892
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB PolEmo2.0-IN
          revision: None
          split: test
          type: PL-MTEB/polemo2_in
        metrics:
          - type: accuracy
            value: 89.39058171745152
          - type: f1
            value: 86.8552093529568
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PolEmo2.0-OUT
          revision: None
          split: test
          type: PL-MTEB/polemo2_out
        metrics:
          - type: accuracy
            value: 74.97975708502024
          - type: f1
            value: 58.73081628832407
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB Quora-PL
          revision: 0be27e93455051e531182b85e85e425aba12e9d4
          split: test
          type: clarin-knext/quora-pl
        metrics:
          - type: map_at_1
            value: 64.917
          - type: map_at_10
            value: 78.74600000000001
          - type: map_at_100
            value: 79.501
          - type: map_at_1000
            value: 79.524
          - type: map_at_3
            value: 75.549
          - type: map_at_5
            value: 77.495
          - type: mrr_at_1
            value: 74.9
          - type: mrr_at_10
            value: 82.112
          - type: mrr_at_100
            value: 82.314
          - type: mrr_at_1000
            value: 82.317
          - type: mrr_at_3
            value: 80.745
          - type: mrr_at_5
            value: 81.607
          - type: ndcg_at_1
            value: 74.83999999999999
          - type: ndcg_at_10
            value: 83.214
          - type: ndcg_at_100
            value: 84.997
          - type: ndcg_at_1000
            value: 85.207
          - type: ndcg_at_3
            value: 79.547
          - type: ndcg_at_5
            value: 81.46600000000001
          - type: precision_at_1
            value: 74.83999999999999
          - type: precision_at_10
            value: 12.822
          - type: precision_at_100
            value: 1.506
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 34.903
          - type: precision_at_5
            value: 23.16
          - type: recall_at_1
            value: 64.917
          - type: recall_at_10
            value: 92.27199999999999
          - type: recall_at_100
            value: 98.715
          - type: recall_at_1000
            value: 99.854
          - type: recall_at_3
            value: 82.04599999999999
          - type: recall_at_5
            value: 87.2
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SCIDOCS-PL
          revision: 45452b03f05560207ef19149545f168e596c9337
          split: test
          type: clarin-knext/scidocs-pl
        metrics:
          - type: map_at_1
            value: 3.51
          - type: map_at_10
            value: 9.046999999999999
          - type: map_at_100
            value: 10.823
          - type: map_at_1000
            value: 11.144
          - type: map_at_3
            value: 6.257
          - type: map_at_5
            value: 7.648000000000001
          - type: mrr_at_1
            value: 17.299999999999997
          - type: mrr_at_10
            value: 27.419
          - type: mrr_at_100
            value: 28.618
          - type: mrr_at_1000
            value: 28.685
          - type: mrr_at_3
            value: 23.817
          - type: mrr_at_5
            value: 25.927
          - type: ndcg_at_1
            value: 17.299999999999997
          - type: ndcg_at_10
            value: 16.084
          - type: ndcg_at_100
            value: 23.729
          - type: ndcg_at_1000
            value: 29.476999999999997
          - type: ndcg_at_3
            value: 14.327000000000002
          - type: ndcg_at_5
            value: 13.017999999999999
          - type: precision_at_1
            value: 17.299999999999997
          - type: precision_at_10
            value: 8.63
          - type: precision_at_100
            value: 1.981
          - type: precision_at_1000
            value: 0.336
          - type: precision_at_3
            value: 13.4
          - type: precision_at_5
            value: 11.700000000000001
          - type: recall_at_1
            value: 3.51
          - type: recall_at_10
            value: 17.518
          - type: recall_at_100
            value: 40.275
          - type: recall_at_1000
            value: 68.203
          - type: recall_at_3
            value: 8.155
          - type: recall_at_5
            value: 11.875
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-E-PL
          revision: None
          split: test
          type: PL-MTEB/sicke-pl-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 86.30248675091724
          - type: cos_sim_ap
            value: 83.6756734006714
          - type: cos_sim_f1
            value: 74.97367497367497
          - type: cos_sim_precision
            value: 73.91003460207612
          - type: cos_sim_recall
            value: 76.06837606837607
          - type: dot_accuracy
            value: 86.30248675091724
          - type: dot_ap
            value: 83.6756734006714
          - type: dot_f1
            value: 74.97367497367497
          - type: dot_precision
            value: 73.91003460207612
          - type: dot_recall
            value: 76.06837606837607
          - type: euclidean_accuracy
            value: 86.30248675091724
          - type: euclidean_ap
            value: 83.67566984333091
          - type: euclidean_f1
            value: 74.97367497367497
          - type: euclidean_precision
            value: 73.91003460207612
          - type: euclidean_recall
            value: 76.06837606837607
          - type: manhattan_accuracy
            value: 86.28210354667753
          - type: manhattan_ap
            value: 83.64216119130171
          - type: manhattan_f1
            value: 74.92152075340078
          - type: manhattan_precision
            value: 73.4107997265892
          - type: manhattan_recall
            value: 76.49572649572649
          - type: max_accuracy
            value: 86.30248675091724
          - type: max_ap
            value: 83.6756734006714
          - type: max_f1
            value: 74.97367497367497
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB SICK-R-PL
          revision: None
          split: test
          type: PL-MTEB/sickr-pl-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.23295940859121
          - type: cos_sim_spearman
            value: 78.89329160768719
          - type: euclidean_pearson
            value: 79.56019107076818
          - type: euclidean_spearman
            value: 78.89330209904084
          - type: manhattan_pearson
            value: 79.76098513973719
          - type: manhattan_spearman
            value: 79.05490162570123
        task:
          type: STS
      - dataset:
          config: pl
          name: MTEB STS22 (pl)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 37.732606308062486
          - type: cos_sim_spearman
            value: 41.01645667030284
          - type: euclidean_pearson
            value: 26.61722556367085
          - type: euclidean_spearman
            value: 41.01645667030284
          - type: manhattan_pearson
            value: 26.60917378970807
          - type: manhattan_spearman
            value: 41.51335727617614
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciFact-PL
          revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
          split: test
          type: clarin-knext/scifact-pl
        metrics:
          - type: map_at_1
            value: 54.31700000000001
          - type: map_at_10
            value: 65.564
          - type: map_at_100
            value: 66.062
          - type: map_at_1000
            value: 66.08699999999999
          - type: map_at_3
            value: 62.592999999999996
          - type: map_at_5
            value: 63.888
          - type: mrr_at_1
            value: 56.99999999999999
          - type: mrr_at_10
            value: 66.412
          - type: mrr_at_100
            value: 66.85900000000001
          - type: mrr_at_1000
            value: 66.88
          - type: mrr_at_3
            value: 64.22200000000001
          - type: mrr_at_5
            value: 65.206
          - type: ndcg_at_1
            value: 56.99999999999999
          - type: ndcg_at_10
            value: 70.577
          - type: ndcg_at_100
            value: 72.879
          - type: ndcg_at_1000
            value: 73.45
          - type: ndcg_at_3
            value: 65.5
          - type: ndcg_at_5
            value: 67.278
          - type: precision_at_1
            value: 56.99999999999999
          - type: precision_at_10
            value: 9.667
          - type: precision_at_100
            value: 1.083
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 26
          - type: precision_at_5
            value: 16.933
          - type: recall_at_1
            value: 54.31700000000001
          - type: recall_at_10
            value: 85.056
          - type: recall_at_100
            value: 95.667
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 71
          - type: recall_at_5
            value: 75.672
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TRECCOVID-PL
          revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
          split: test
          type: clarin-knext/trec-covid-pl
        metrics:
          - type: map_at_1
            value: 0.245
          - type: map_at_10
            value: 2.051
          - type: map_at_100
            value: 12.009
          - type: map_at_1000
            value: 27.448
          - type: map_at_3
            value: 0.721
          - type: map_at_5
            value: 1.13
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 93
          - type: mrr_at_100
            value: 93
          - type: mrr_at_1000
            value: 93
          - type: mrr_at_3
            value: 93
          - type: mrr_at_5
            value: 93
          - type: ndcg_at_1
            value: 85
          - type: ndcg_at_10
            value: 80.303
          - type: ndcg_at_100
            value: 61.23499999999999
          - type: ndcg_at_1000
            value: 52.978
          - type: ndcg_at_3
            value: 84.419
          - type: ndcg_at_5
            value: 82.976
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 83.39999999999999
          - type: precision_at_100
            value: 61.96
          - type: precision_at_1000
            value: 22.648
          - type: precision_at_3
            value: 89.333
          - type: precision_at_5
            value: 87.2
          - type: recall_at_1
            value: 0.245
          - type: recall_at_10
            value: 2.193
          - type: recall_at_100
            value: 14.938
          - type: recall_at_1000
            value: 48.563
          - type: recall_at_3
            value: 0.738
          - type: recall_at_5
            value: 1.173
        task:
          type: Retrieval

gte-Qwen2-7B-instruct

gte-Qwen2-7B-instruct is the latest model in the gte (General Text Embedding) model family that ranks No.1 in both English and Chinese evaluations on the Massive Text Embedding Benchmark MTEB benchmark (as of June 16, 2024).

Recently, the Qwen team released the Qwen2 series models, and we have trained the gte-Qwen2-7B-instruct model based on the Qwen2-7B LLM model. Compared to the gte-Qwen1.5-7B-instruct model, the gte-Qwen2-7B-instruct model uses the same training data and training strategies during the finetuning stage, with the only difference being the upgraded base model to Qwen2-7B. Considering the improvements in the Qwen2 series models compared to the Qwen1.5 series, we can also expect consistent performance enhancements in the embedding models.

The model incorporates several key advancements:

  • Integration of bidirectional attention mechanisms, enriching its contextual understanding.
  • Instruction tuning, applied solely on the query side for streamlined efficiency
  • Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.

Model Information

  • Model Size: 7B
  • Embedding Dimension: 3584
  • Max Input Tokens: 32k

Requirements

transformers>=4.39.2
flash_attn>=2.5.6

Usage

Sentence Transformers

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-7B-instruct", trust_remote_code=True)
# In case you want to reduce the maximum length:
model.max_seq_length = 8192

queries = [
    "how much protein should a female eat",
    "summit define",
]
documents = [
    "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments.",
]

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = (query_embeddings @ document_embeddings.T) * 100
print(scores.tolist())

Observe the config_sentence_transformers.json to see all pre-built prompt names. Otherwise, you can use model.encode(queries, prompt="Instruct: ...\nQuery: " to use a custom prompt of your choice.

Transformers

import torch
import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def last_token_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]


def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery: {query}'


# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
    get_detailed_instruct(task, 'how much protein should a female eat'),
    get_detailed_instruct(task, 'summit define')
]
# No need to add instruction for retrieval documents
documents = [
    "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."
]
input_texts = queries + documents

tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True)
model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-7B-instruct', trust_remote_code=True)

max_length = 8192

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())

Infinity_emb

Usage via infinity, a MIT Licensed inference server.

# requires ~16-32GB VRAM NVIDIA Compute Capability >= 8.0
docker run \
-v $PWD/data:/app/.cache --gpus "0" -p "7997":"7997" \
michaelf34/infinity:0.0.68-trt-onnx \
v2 --model-id Alibaba-NLP/gte-Qwen2-7B-instruct --revision "refs/pr/38" --dtype bfloat16 --batch-size 8 --device cuda --engine torch --port 7997 --no-bettertransformer

Evaluation

MTEB & C-MTEB

You can use the scripts/eval_mteb.py to reproduce the following result of gte-Qwen2-7B-instruct on MTEB(English)/C-MTEB(Chinese):

Model Name MTEB(56) C-MTEB(35) MTEB-fr(26) MTEB-pl(26)
bge-base-en-1.5 64.23 - - -
bge-large-en-1.5 63.55 - - -
gte-large-en-v1.5 65.39 - - -
gte-base-en-v1.5 64.11 - - -
mxbai-embed-large-v1 64.68 - - -
acge_text_embedding - 69.07 - -
stella-mrl-large-zh-v3.5-1792d - 68.55 - -
gte-large-zh - 66.72 - -
multilingual-e5-base 59.45 56.21 - -
multilingual-e5-large 61.50 58.81 - -
e5-mistral-7b-instruct 66.63 60.81 - -
gte-Qwen1.5-7B-instruct 67.34 69.52 - -
NV-Embed-v1 69.32 - - -
gte-Qwen2-7B-instruct 70.24 72.05 68.25 67.86
gte-Qwen2-1.5B-instruc(https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) 67.16 67.65 66.60 64.04

GTE Models

The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture).

Models Language Max Sequence Length Dimension Model Size (Memory Usage, fp32)
GTE-large-zh Chinese 512 1024 1.25GB
GTE-base-zh Chinese 512 512 0.41GB
GTE-small-zh Chinese 512 512 0.12GB
GTE-large English 512 1024 1.25GB
GTE-base English 512 512 0.21GB
GTE-small English 512 384 0.10GB
GTE-large-en-v1.5 English 8192 1024 1.74GB
GTE-base-en-v1.5 English 8192 768 0.51GB
GTE-Qwen1.5-7B-instruct Multilingual 32000 4096 26.45GB
GTE-Qwen2-7B-instruct Multilingual 32000 3584 26.45GB
GTE-Qwen2-1.5B-instruct Multilingual 32000 1536 6.62GB

Cloud API Services

In addition to the open-source GTE series models, GTE series models are also available as commercial API services on Alibaba Cloud.

  • Embedding Models: Rhree versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service.
  • ReRank Models: The gte-rerank model service is available.

Note that the models behind the commercial APIs are not entirely identical to the open-source models.

Citation

If you find our paper or models helpful, please consider cite:

@article{li2023towards,
  title={Towards general text embeddings with multi-stage contrastive learning},
  author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
  journal={arXiv preprint arXiv:2308.03281},
  year={2023}
}