gte-base-en-v1.5 / README.md
izhx's picture
Add transformers.js example code (#5)
d9853a8 verified
|
raw
history blame
71.1 kB
metadata
library_name: transformers
tags:
  - sentence-transformers
  - gte
  - mteb
  - transformers.js
license: apache-2.0
language:
  - en
model-index:
  - name: gte-base-en-v1.5
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 74.7910447761194
          - type: ap
            value: 37.053785713650626
          - type: f1
            value: 68.51101510998551
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.016875
          - type: ap
            value: 89.17750268426342
          - type: f1
            value: 92.9970977240524
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 53.312000000000005
          - type: f1
            value: 52.98175784163017
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 38.193
          - type: map_at_10
            value: 54.848
          - type: map_at_100
            value: 55.388000000000005
          - type: map_at_1000
            value: 55.388999999999996
          - type: map_at_3
            value: 50.427
          - type: map_at_5
            value: 53.105000000000004
          - type: mrr_at_1
            value: 39.047
          - type: mrr_at_10
            value: 55.153
          - type: mrr_at_100
            value: 55.686
          - type: mrr_at_1000
            value: 55.688
          - type: mrr_at_3
            value: 50.676
          - type: mrr_at_5
            value: 53.417
          - type: ndcg_at_1
            value: 38.193
          - type: ndcg_at_10
            value: 63.486
          - type: ndcg_at_100
            value: 65.58
          - type: ndcg_at_1000
            value: 65.61
          - type: ndcg_at_3
            value: 54.494
          - type: ndcg_at_5
            value: 59.339
          - type: precision_at_1
            value: 38.193
          - type: precision_at_10
            value: 9.075
          - type: precision_at_100
            value: 0.9939999999999999
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.096
          - type: precision_at_5
            value: 15.619
          - type: recall_at_1
            value: 38.193
          - type: recall_at_10
            value: 90.754
          - type: recall_at_100
            value: 99.431
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 66.28699999999999
          - type: recall_at_5
            value: 78.094
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 47.508221208908964
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 42.04668382560096
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 61.828759903716815
          - type: mrr
            value: 74.37343358395991
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 85.03673698773017
          - type: cos_sim_spearman
            value: 83.6470866785058
          - type: euclidean_pearson
            value: 82.64048673096565
          - type: euclidean_spearman
            value: 83.63142367101115
          - type: manhattan_pearson
            value: 82.71493099760228
          - type: manhattan_spearman
            value: 83.60491704294326
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 86.73376623376623
          - type: f1
            value: 86.70294049278262
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 40.31923804167062
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 37.552547125348454
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 30.567
          - type: map_at_10
            value: 41.269
          - type: map_at_100
            value: 42.689
          - type: map_at_1000
            value: 42.84
          - type: map_at_3
            value: 37.567
          - type: map_at_5
            value: 39.706
          - type: mrr_at_1
            value: 37.053000000000004
          - type: mrr_at_10
            value: 46.900999999999996
          - type: mrr_at_100
            value: 47.662
          - type: mrr_at_1000
            value: 47.713
          - type: mrr_at_3
            value: 43.801
          - type: mrr_at_5
            value: 45.689
          - type: ndcg_at_1
            value: 37.053000000000004
          - type: ndcg_at_10
            value: 47.73
          - type: ndcg_at_100
            value: 53.128
          - type: ndcg_at_1000
            value: 55.300000000000004
          - type: ndcg_at_3
            value: 42.046
          - type: ndcg_at_5
            value: 44.782
          - type: precision_at_1
            value: 37.053000000000004
          - type: precision_at_10
            value: 9.142
          - type: precision_at_100
            value: 1.485
          - type: precision_at_1000
            value: 0.197
          - type: precision_at_3
            value: 20.076
          - type: precision_at_5
            value: 14.535
          - type: recall_at_1
            value: 30.567
          - type: recall_at_10
            value: 60.602999999999994
          - type: recall_at_100
            value: 83.22800000000001
          - type: recall_at_1000
            value: 96.696
          - type: recall_at_3
            value: 44.336999999999996
          - type: recall_at_5
            value: 51.949
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 28.538000000000004
          - type: map_at_10
            value: 38.757999999999996
          - type: map_at_100
            value: 40.129
          - type: map_at_1000
            value: 40.262
          - type: map_at_3
            value: 35.866
          - type: map_at_5
            value: 37.417
          - type: mrr_at_1
            value: 36.051
          - type: mrr_at_10
            value: 44.868
          - type: mrr_at_100
            value: 45.568999999999996
          - type: mrr_at_1000
            value: 45.615
          - type: mrr_at_3
            value: 42.558
          - type: mrr_at_5
            value: 43.883
          - type: ndcg_at_1
            value: 36.051
          - type: ndcg_at_10
            value: 44.584
          - type: ndcg_at_100
            value: 49.356
          - type: ndcg_at_1000
            value: 51.39
          - type: ndcg_at_3
            value: 40.389
          - type: ndcg_at_5
            value: 42.14
          - type: precision_at_1
            value: 36.051
          - type: precision_at_10
            value: 8.446
          - type: precision_at_100
            value: 1.411
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 19.639
          - type: precision_at_5
            value: 13.796
          - type: recall_at_1
            value: 28.538000000000004
          - type: recall_at_10
            value: 54.99000000000001
          - type: recall_at_100
            value: 75.098
          - type: recall_at_1000
            value: 87.848
          - type: recall_at_3
            value: 42.236000000000004
          - type: recall_at_5
            value: 47.377
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 37.188
          - type: map_at_10
            value: 50.861000000000004
          - type: map_at_100
            value: 51.917
          - type: map_at_1000
            value: 51.964999999999996
          - type: map_at_3
            value: 47.144000000000005
          - type: map_at_5
            value: 49.417
          - type: mrr_at_1
            value: 42.571
          - type: mrr_at_10
            value: 54.086999999999996
          - type: mrr_at_100
            value: 54.739000000000004
          - type: mrr_at_1000
            value: 54.762
          - type: mrr_at_3
            value: 51.285000000000004
          - type: mrr_at_5
            value: 53
          - type: ndcg_at_1
            value: 42.571
          - type: ndcg_at_10
            value: 57.282
          - type: ndcg_at_100
            value: 61.477000000000004
          - type: ndcg_at_1000
            value: 62.426
          - type: ndcg_at_3
            value: 51
          - type: ndcg_at_5
            value: 54.346000000000004
          - type: precision_at_1
            value: 42.571
          - type: precision_at_10
            value: 9.467
          - type: precision_at_100
            value: 1.2550000000000001
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 23.114
          - type: precision_at_5
            value: 16.250999999999998
          - type: recall_at_1
            value: 37.188
          - type: recall_at_10
            value: 73.068
          - type: recall_at_100
            value: 91.203
          - type: recall_at_1000
            value: 97.916
          - type: recall_at_3
            value: 56.552
          - type: recall_at_5
            value: 64.567
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 25.041000000000004
          - type: map_at_10
            value: 33.86
          - type: map_at_100
            value: 34.988
          - type: map_at_1000
            value: 35.064
          - type: map_at_3
            value: 31.049
          - type: map_at_5
            value: 32.845
          - type: mrr_at_1
            value: 26.893
          - type: mrr_at_10
            value: 35.594
          - type: mrr_at_100
            value: 36.617
          - type: mrr_at_1000
            value: 36.671
          - type: mrr_at_3
            value: 33.051
          - type: mrr_at_5
            value: 34.61
          - type: ndcg_at_1
            value: 26.893
          - type: ndcg_at_10
            value: 38.674
          - type: ndcg_at_100
            value: 44.178
          - type: ndcg_at_1000
            value: 46.089999999999996
          - type: ndcg_at_3
            value: 33.485
          - type: ndcg_at_5
            value: 36.402
          - type: precision_at_1
            value: 26.893
          - type: precision_at_10
            value: 5.989
          - type: precision_at_100
            value: 0.918
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 14.2
          - type: precision_at_5
            value: 10.26
          - type: recall_at_1
            value: 25.041000000000004
          - type: recall_at_10
            value: 51.666000000000004
          - type: recall_at_100
            value: 76.896
          - type: recall_at_1000
            value: 91.243
          - type: recall_at_3
            value: 38.035999999999994
          - type: recall_at_5
            value: 44.999
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 15.909999999999998
          - type: map_at_10
            value: 23.901
          - type: map_at_100
            value: 25.165
          - type: map_at_1000
            value: 25.291000000000004
          - type: map_at_3
            value: 21.356
          - type: map_at_5
            value: 22.816
          - type: mrr_at_1
            value: 20.025000000000002
          - type: mrr_at_10
            value: 28.382
          - type: mrr_at_100
            value: 29.465000000000003
          - type: mrr_at_1000
            value: 29.535
          - type: mrr_at_3
            value: 25.933
          - type: mrr_at_5
            value: 27.332
          - type: ndcg_at_1
            value: 20.025000000000002
          - type: ndcg_at_10
            value: 29.099000000000004
          - type: ndcg_at_100
            value: 35.127
          - type: ndcg_at_1000
            value: 38.096000000000004
          - type: ndcg_at_3
            value: 24.464
          - type: ndcg_at_5
            value: 26.709
          - type: precision_at_1
            value: 20.025000000000002
          - type: precision_at_10
            value: 5.398
          - type: precision_at_100
            value: 0.9690000000000001
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 11.774
          - type: precision_at_5
            value: 8.632
          - type: recall_at_1
            value: 15.909999999999998
          - type: recall_at_10
            value: 40.672000000000004
          - type: recall_at_100
            value: 66.855
          - type: recall_at_1000
            value: 87.922
          - type: recall_at_3
            value: 28.069
          - type: recall_at_5
            value: 33.812
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 30.175
          - type: map_at_10
            value: 41.36
          - type: map_at_100
            value: 42.701
          - type: map_at_1000
            value: 42.817
          - type: map_at_3
            value: 37.931
          - type: map_at_5
            value: 39.943
          - type: mrr_at_1
            value: 35.611
          - type: mrr_at_10
            value: 46.346
          - type: mrr_at_100
            value: 47.160000000000004
          - type: mrr_at_1000
            value: 47.203
          - type: mrr_at_3
            value: 43.712
          - type: mrr_at_5
            value: 45.367000000000004
          - type: ndcg_at_1
            value: 35.611
          - type: ndcg_at_10
            value: 47.532000000000004
          - type: ndcg_at_100
            value: 53.003
          - type: ndcg_at_1000
            value: 55.007
          - type: ndcg_at_3
            value: 42.043
          - type: ndcg_at_5
            value: 44.86
          - type: precision_at_1
            value: 35.611
          - type: precision_at_10
            value: 8.624
          - type: precision_at_100
            value: 1.332
          - type: precision_at_1000
            value: 0.169
          - type: precision_at_3
            value: 20.083000000000002
          - type: precision_at_5
            value: 14.437
          - type: recall_at_1
            value: 30.175
          - type: recall_at_10
            value: 60.5
          - type: recall_at_100
            value: 83.399
          - type: recall_at_1000
            value: 96.255
          - type: recall_at_3
            value: 45.448
          - type: recall_at_5
            value: 52.432
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 22.467000000000002
          - type: map_at_10
            value: 33.812999999999995
          - type: map_at_100
            value: 35.248000000000005
          - type: map_at_1000
            value: 35.359
          - type: map_at_3
            value: 30.316
          - type: map_at_5
            value: 32.233000000000004
          - type: mrr_at_1
            value: 28.310999999999996
          - type: mrr_at_10
            value: 38.979
          - type: mrr_at_100
            value: 39.937
          - type: mrr_at_1000
            value: 39.989999999999995
          - type: mrr_at_3
            value: 36.244
          - type: mrr_at_5
            value: 37.871
          - type: ndcg_at_1
            value: 28.310999999999996
          - type: ndcg_at_10
            value: 40.282000000000004
          - type: ndcg_at_100
            value: 46.22
          - type: ndcg_at_1000
            value: 48.507
          - type: ndcg_at_3
            value: 34.596
          - type: ndcg_at_5
            value: 37.267
          - type: precision_at_1
            value: 28.310999999999996
          - type: precision_at_10
            value: 7.831
          - type: precision_at_100
            value: 1.257
          - type: precision_at_1000
            value: 0.164
          - type: precision_at_3
            value: 17.275
          - type: precision_at_5
            value: 12.556999999999999
          - type: recall_at_1
            value: 22.467000000000002
          - type: recall_at_10
            value: 54.14099999999999
          - type: recall_at_100
            value: 79.593
          - type: recall_at_1000
            value: 95.063
          - type: recall_at_3
            value: 38.539
          - type: recall_at_5
            value: 45.403
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 24.18591666666667
          - type: map_at_10
            value: 33.84258333333333
          - type: map_at_100
            value: 35.11391666666666
          - type: map_at_1000
            value: 35.23258333333333
          - type: map_at_3
            value: 30.764249999999997
          - type: map_at_5
            value: 32.52333333333334
          - type: mrr_at_1
            value: 28.54733333333333
          - type: mrr_at_10
            value: 37.81725
          - type: mrr_at_100
            value: 38.716499999999996
          - type: mrr_at_1000
            value: 38.77458333333333
          - type: mrr_at_3
            value: 35.157833333333336
          - type: mrr_at_5
            value: 36.69816666666667
          - type: ndcg_at_1
            value: 28.54733333333333
          - type: ndcg_at_10
            value: 39.51508333333334
          - type: ndcg_at_100
            value: 44.95316666666666
          - type: ndcg_at_1000
            value: 47.257083333333334
          - type: ndcg_at_3
            value: 34.205833333333324
          - type: ndcg_at_5
            value: 36.78266666666667
          - type: precision_at_1
            value: 28.54733333333333
          - type: precision_at_10
            value: 7.082583333333334
          - type: precision_at_100
            value: 1.1590833333333332
          - type: precision_at_1000
            value: 0.15516666666666662
          - type: precision_at_3
            value: 15.908750000000001
          - type: precision_at_5
            value: 11.505416666666669
          - type: recall_at_1
            value: 24.18591666666667
          - type: recall_at_10
            value: 52.38758333333333
          - type: recall_at_100
            value: 76.13666666666667
          - type: recall_at_1000
            value: 91.99066666666667
          - type: recall_at_3
            value: 37.78333333333334
          - type: recall_at_5
            value: 44.30141666666666
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 21.975
          - type: map_at_10
            value: 29.781000000000002
          - type: map_at_100
            value: 30.847
          - type: map_at_1000
            value: 30.94
          - type: map_at_3
            value: 27.167
          - type: map_at_5
            value: 28.633999999999997
          - type: mrr_at_1
            value: 24.387
          - type: mrr_at_10
            value: 32.476
          - type: mrr_at_100
            value: 33.337
          - type: mrr_at_1000
            value: 33.403
          - type: mrr_at_3
            value: 29.881999999999998
          - type: mrr_at_5
            value: 31.339
          - type: ndcg_at_1
            value: 24.387
          - type: ndcg_at_10
            value: 34.596
          - type: ndcg_at_100
            value: 39.635
          - type: ndcg_at_1000
            value: 42.079
          - type: ndcg_at_3
            value: 29.516
          - type: ndcg_at_5
            value: 31.959
          - type: precision_at_1
            value: 24.387
          - type: precision_at_10
            value: 5.6129999999999995
          - type: precision_at_100
            value: 0.8909999999999999
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 12.73
          - type: precision_at_5
            value: 9.171999999999999
          - type: recall_at_1
            value: 21.975
          - type: recall_at_10
            value: 46.826
          - type: recall_at_100
            value: 69.554
          - type: recall_at_1000
            value: 87.749
          - type: recall_at_3
            value: 33.016
          - type: recall_at_5
            value: 38.97
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 15.614
          - type: map_at_10
            value: 22.927
          - type: map_at_100
            value: 24.185000000000002
          - type: map_at_1000
            value: 24.319
          - type: map_at_3
            value: 20.596
          - type: map_at_5
            value: 21.854000000000003
          - type: mrr_at_1
            value: 18.858
          - type: mrr_at_10
            value: 26.535999999999998
          - type: mrr_at_100
            value: 27.582
          - type: mrr_at_1000
            value: 27.665
          - type: mrr_at_3
            value: 24.295
          - type: mrr_at_5
            value: 25.532
          - type: ndcg_at_1
            value: 18.858
          - type: ndcg_at_10
            value: 27.583000000000002
          - type: ndcg_at_100
            value: 33.635
          - type: ndcg_at_1000
            value: 36.647
          - type: ndcg_at_3
            value: 23.348
          - type: ndcg_at_5
            value: 25.257
          - type: precision_at_1
            value: 18.858
          - type: precision_at_10
            value: 5.158
          - type: precision_at_100
            value: 0.964
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_3
            value: 11.092
          - type: precision_at_5
            value: 8.1
          - type: recall_at_1
            value: 15.614
          - type: recall_at_10
            value: 37.916
          - type: recall_at_100
            value: 65.205
          - type: recall_at_1000
            value: 86.453
          - type: recall_at_3
            value: 26.137
          - type: recall_at_5
            value: 31.087999999999997
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 23.078000000000003
          - type: map_at_10
            value: 31.941999999999997
          - type: map_at_100
            value: 33.196999999999996
          - type: map_at_1000
            value: 33.303
          - type: map_at_3
            value: 28.927000000000003
          - type: map_at_5
            value: 30.707
          - type: mrr_at_1
            value: 26.866
          - type: mrr_at_10
            value: 35.557
          - type: mrr_at_100
            value: 36.569
          - type: mrr_at_1000
            value: 36.632
          - type: mrr_at_3
            value: 32.897999999999996
          - type: mrr_at_5
            value: 34.437
          - type: ndcg_at_1
            value: 26.866
          - type: ndcg_at_10
            value: 37.372
          - type: ndcg_at_100
            value: 43.248
          - type: ndcg_at_1000
            value: 45.632
          - type: ndcg_at_3
            value: 31.852999999999998
          - type: ndcg_at_5
            value: 34.582
          - type: precision_at_1
            value: 26.866
          - type: precision_at_10
            value: 6.511
          - type: precision_at_100
            value: 1.078
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 14.582999999999998
          - type: precision_at_5
            value: 10.634
          - type: recall_at_1
            value: 23.078000000000003
          - type: recall_at_10
            value: 50.334
          - type: recall_at_100
            value: 75.787
          - type: recall_at_1000
            value: 92.485
          - type: recall_at_3
            value: 35.386
          - type: recall_at_5
            value: 42.225
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 22.203999999999997
          - type: map_at_10
            value: 31.276
          - type: map_at_100
            value: 32.844
          - type: map_at_1000
            value: 33.062999999999995
          - type: map_at_3
            value: 27.733999999999998
          - type: map_at_5
            value: 29.64
          - type: mrr_at_1
            value: 27.272999999999996
          - type: mrr_at_10
            value: 36.083
          - type: mrr_at_100
            value: 37.008
          - type: mrr_at_1000
            value: 37.076
          - type: mrr_at_3
            value: 33.004
          - type: mrr_at_5
            value: 34.664
          - type: ndcg_at_1
            value: 27.272999999999996
          - type: ndcg_at_10
            value: 37.763000000000005
          - type: ndcg_at_100
            value: 43.566
          - type: ndcg_at_1000
            value: 46.356
          - type: ndcg_at_3
            value: 31.673000000000002
          - type: ndcg_at_5
            value: 34.501
          - type: precision_at_1
            value: 27.272999999999996
          - type: precision_at_10
            value: 7.470000000000001
          - type: precision_at_100
            value: 1.502
          - type: precision_at_1000
            value: 0.24
          - type: precision_at_3
            value: 14.756
          - type: precision_at_5
            value: 11.225
          - type: recall_at_1
            value: 22.203999999999997
          - type: recall_at_10
            value: 51.437999999999995
          - type: recall_at_100
            value: 76.845
          - type: recall_at_1000
            value: 94.38600000000001
          - type: recall_at_3
            value: 34.258
          - type: recall_at_5
            value: 41.512
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 17.474
          - type: map_at_10
            value: 26.362999999999996
          - type: map_at_100
            value: 27.456999999999997
          - type: map_at_1000
            value: 27.567999999999998
          - type: map_at_3
            value: 23.518
          - type: map_at_5
            value: 25.068
          - type: mrr_at_1
            value: 18.669
          - type: mrr_at_10
            value: 27.998
          - type: mrr_at_100
            value: 28.953
          - type: mrr_at_1000
            value: 29.03
          - type: mrr_at_3
            value: 25.230999999999998
          - type: mrr_at_5
            value: 26.654
          - type: ndcg_at_1
            value: 18.669
          - type: ndcg_at_10
            value: 31.684
          - type: ndcg_at_100
            value: 36.864999999999995
          - type: ndcg_at_1000
            value: 39.555
          - type: ndcg_at_3
            value: 26.057000000000002
          - type: ndcg_at_5
            value: 28.587
          - type: precision_at_1
            value: 18.669
          - type: precision_at_10
            value: 5.3420000000000005
          - type: precision_at_100
            value: 0.847
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 11.583
          - type: precision_at_5
            value: 8.466
          - type: recall_at_1
            value: 17.474
          - type: recall_at_10
            value: 46.497
          - type: recall_at_100
            value: 69.977
          - type: recall_at_1000
            value: 89.872
          - type: recall_at_3
            value: 31.385999999999996
          - type: recall_at_5
            value: 37.283
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 17.173
          - type: map_at_10
            value: 30.407
          - type: map_at_100
            value: 32.528
          - type: map_at_1000
            value: 32.698
          - type: map_at_3
            value: 25.523
          - type: map_at_5
            value: 28.038
          - type: mrr_at_1
            value: 38.958
          - type: mrr_at_10
            value: 51.515
          - type: mrr_at_100
            value: 52.214000000000006
          - type: mrr_at_1000
            value: 52.237
          - type: mrr_at_3
            value: 48.502
          - type: mrr_at_5
            value: 50.251000000000005
          - type: ndcg_at_1
            value: 38.958
          - type: ndcg_at_10
            value: 40.355000000000004
          - type: ndcg_at_100
            value: 47.68
          - type: ndcg_at_1000
            value: 50.370000000000005
          - type: ndcg_at_3
            value: 33.946
          - type: ndcg_at_5
            value: 36.057
          - type: precision_at_1
            value: 38.958
          - type: precision_at_10
            value: 12.508
          - type: precision_at_100
            value: 2.054
          - type: precision_at_1000
            value: 0.256
          - type: precision_at_3
            value: 25.581
          - type: precision_at_5
            value: 19.256999999999998
          - type: recall_at_1
            value: 17.173
          - type: recall_at_10
            value: 46.967
          - type: recall_at_100
            value: 71.47200000000001
          - type: recall_at_1000
            value: 86.238
          - type: recall_at_3
            value: 30.961
          - type: recall_at_5
            value: 37.539
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 8.999
          - type: map_at_10
            value: 18.989
          - type: map_at_100
            value: 26.133
          - type: map_at_1000
            value: 27.666
          - type: map_at_3
            value: 13.918
          - type: map_at_5
            value: 16.473
          - type: mrr_at_1
            value: 66.25
          - type: mrr_at_10
            value: 74.161
          - type: mrr_at_100
            value: 74.516
          - type: mrr_at_1000
            value: 74.524
          - type: mrr_at_3
            value: 72.875
          - type: mrr_at_5
            value: 73.613
          - type: ndcg_at_1
            value: 54.37499999999999
          - type: ndcg_at_10
            value: 39.902
          - type: ndcg_at_100
            value: 44.212
          - type: ndcg_at_1000
            value: 51.62
          - type: ndcg_at_3
            value: 45.193
          - type: ndcg_at_5
            value: 42.541000000000004
          - type: precision_at_1
            value: 66.25
          - type: precision_at_10
            value: 30.425
          - type: precision_at_100
            value: 9.754999999999999
          - type: precision_at_1000
            value: 2.043
          - type: precision_at_3
            value: 48.25
          - type: precision_at_5
            value: 40.65
          - type: recall_at_1
            value: 8.999
          - type: recall_at_10
            value: 24.133
          - type: recall_at_100
            value: 49.138999999999996
          - type: recall_at_1000
            value: 72.639
          - type: recall_at_3
            value: 15.287999999999998
          - type: recall_at_5
            value: 19.415
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 46.38999999999999
          - type: f1
            value: 41.444205512055234
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 87.35000000000001
          - type: map_at_10
            value: 92.837
          - type: map_at_100
            value: 92.996
          - type: map_at_1000
            value: 93.006
          - type: map_at_3
            value: 92.187
          - type: map_at_5
            value: 92.595
          - type: mrr_at_1
            value: 93.864
          - type: mrr_at_10
            value: 96.723
          - type: mrr_at_100
            value: 96.72500000000001
          - type: mrr_at_1000
            value: 96.72500000000001
          - type: mrr_at_3
            value: 96.64
          - type: mrr_at_5
            value: 96.71499999999999
          - type: ndcg_at_1
            value: 93.864
          - type: ndcg_at_10
            value: 94.813
          - type: ndcg_at_100
            value: 95.243
          - type: ndcg_at_1000
            value: 95.38600000000001
          - type: ndcg_at_3
            value: 94.196
          - type: ndcg_at_5
            value: 94.521
          - type: precision_at_1
            value: 93.864
          - type: precision_at_10
            value: 10.951
          - type: precision_at_100
            value: 1.1400000000000001
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 35.114000000000004
          - type: precision_at_5
            value: 21.476
          - type: recall_at_1
            value: 87.35000000000001
          - type: recall_at_10
            value: 96.941
          - type: recall_at_100
            value: 98.397
          - type: recall_at_1000
            value: 99.21600000000001
          - type: recall_at_3
            value: 95.149
          - type: recall_at_5
            value: 96.131
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 24.476
          - type: map_at_10
            value: 40.11
          - type: map_at_100
            value: 42.229
          - type: map_at_1000
            value: 42.378
          - type: map_at_3
            value: 34.512
          - type: map_at_5
            value: 38.037
          - type: mrr_at_1
            value: 47.839999999999996
          - type: mrr_at_10
            value: 57.053
          - type: mrr_at_100
            value: 57.772
          - type: mrr_at_1000
            value: 57.799
          - type: mrr_at_3
            value: 54.552
          - type: mrr_at_5
            value: 56.011
          - type: ndcg_at_1
            value: 47.839999999999996
          - type: ndcg_at_10
            value: 48.650999999999996
          - type: ndcg_at_100
            value: 55.681000000000004
          - type: ndcg_at_1000
            value: 57.979
          - type: ndcg_at_3
            value: 43.923
          - type: ndcg_at_5
            value: 46.037
          - type: precision_at_1
            value: 47.839999999999996
          - type: precision_at_10
            value: 13.395000000000001
          - type: precision_at_100
            value: 2.0660000000000003
          - type: precision_at_1000
            value: 0.248
          - type: precision_at_3
            value: 29.064
          - type: precision_at_5
            value: 22.006
          - type: recall_at_1
            value: 24.476
          - type: recall_at_10
            value: 56.216
          - type: recall_at_100
            value: 81.798
          - type: recall_at_1000
            value: 95.48299999999999
          - type: recall_at_3
            value: 39.357
          - type: recall_at_5
            value: 47.802
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 42.728
          - type: map_at_10
            value: 57.737
          - type: map_at_100
            value: 58.531
          - type: map_at_1000
            value: 58.594
          - type: map_at_3
            value: 54.869
          - type: map_at_5
            value: 56.55
          - type: mrr_at_1
            value: 85.456
          - type: mrr_at_10
            value: 90.062
          - type: mrr_at_100
            value: 90.159
          - type: mrr_at_1000
            value: 90.16
          - type: mrr_at_3
            value: 89.37899999999999
          - type: mrr_at_5
            value: 89.81
          - type: ndcg_at_1
            value: 85.456
          - type: ndcg_at_10
            value: 67.755
          - type: ndcg_at_100
            value: 70.341
          - type: ndcg_at_1000
            value: 71.538
          - type: ndcg_at_3
            value: 63.735
          - type: ndcg_at_5
            value: 65.823
          - type: precision_at_1
            value: 85.456
          - type: precision_at_10
            value: 13.450000000000001
          - type: precision_at_100
            value: 1.545
          - type: precision_at_1000
            value: 0.16999999999999998
          - type: precision_at_3
            value: 38.861000000000004
          - type: precision_at_5
            value: 24.964
          - type: recall_at_1
            value: 42.728
          - type: recall_at_10
            value: 67.252
          - type: recall_at_100
            value: 77.265
          - type: recall_at_1000
            value: 85.246
          - type: recall_at_3
            value: 58.292
          - type: recall_at_5
            value: 62.41100000000001
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 87.4836
          - type: ap
            value: 82.29552224030336
          - type: f1
            value: 87.42791432227448
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 23.015
          - type: map_at_10
            value: 35.621
          - type: map_at_100
            value: 36.809
          - type: map_at_1000
            value: 36.853
          - type: map_at_3
            value: 31.832
          - type: map_at_5
            value: 34.006
          - type: mrr_at_1
            value: 23.738999999999997
          - type: mrr_at_10
            value: 36.309999999999995
          - type: mrr_at_100
            value: 37.422
          - type: mrr_at_1000
            value: 37.461
          - type: mrr_at_3
            value: 32.592999999999996
          - type: mrr_at_5
            value: 34.736
          - type: ndcg_at_1
            value: 23.724999999999998
          - type: ndcg_at_10
            value: 42.617
          - type: ndcg_at_100
            value: 48.217999999999996
          - type: ndcg_at_1000
            value: 49.309
          - type: ndcg_at_3
            value: 34.905
          - type: ndcg_at_5
            value: 38.769
          - type: precision_at_1
            value: 23.724999999999998
          - type: precision_at_10
            value: 6.689
          - type: precision_at_100
            value: 0.9480000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.89
          - type: precision_at_5
            value: 10.897
          - type: recall_at_1
            value: 23.015
          - type: recall_at_10
            value: 64.041
          - type: recall_at_100
            value: 89.724
          - type: recall_at_1000
            value: 98.00999999999999
          - type: recall_at_3
            value: 43.064
          - type: recall_at_5
            value: 52.31099999999999
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 96.49794801641588
          - type: f1
            value: 96.28931114498003
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 82.81121751025992
          - type: f1
            value: 63.18740125901853
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 77.66644250168123
          - type: f1
            value: 74.93211186867839
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 81.77202420981843
          - type: f1
            value: 81.63681969283554
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 34.596687684870645
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 32.26965660101405
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.33619694846802
          - type: mrr
            value: 32.53719657720334
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 6.0729999999999995
          - type: map_at_10
            value: 13.245999999999999
          - type: map_at_100
            value: 16.747999999999998
          - type: map_at_1000
            value: 18.163
          - type: map_at_3
            value: 10.064
          - type: map_at_5
            value: 11.513
          - type: mrr_at_1
            value: 49.536
          - type: mrr_at_10
            value: 58.092
          - type: mrr_at_100
            value: 58.752
          - type: mrr_at_1000
            value: 58.78
          - type: mrr_at_3
            value: 56.398
          - type: mrr_at_5
            value: 57.389
          - type: ndcg_at_1
            value: 47.059
          - type: ndcg_at_10
            value: 35.881
          - type: ndcg_at_100
            value: 32.751999999999995
          - type: ndcg_at_1000
            value: 41.498000000000005
          - type: ndcg_at_3
            value: 42.518
          - type: ndcg_at_5
            value: 39.550999999999995
          - type: precision_at_1
            value: 49.536
          - type: precision_at_10
            value: 26.316
          - type: precision_at_100
            value: 8.084
          - type: precision_at_1000
            value: 2.081
          - type: precision_at_3
            value: 39.938
          - type: precision_at_5
            value: 34.056
          - type: recall_at_1
            value: 6.0729999999999995
          - type: recall_at_10
            value: 16.593
          - type: recall_at_100
            value: 32.883
          - type: recall_at_1000
            value: 64.654
          - type: recall_at_3
            value: 11.174000000000001
          - type: recall_at_5
            value: 13.528
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 30.043
          - type: map_at_10
            value: 45.318999999999996
          - type: map_at_100
            value: 46.381
          - type: map_at_1000
            value: 46.412
          - type: map_at_3
            value: 40.941
          - type: map_at_5
            value: 43.662
          - type: mrr_at_1
            value: 33.98
          - type: mrr_at_10
            value: 47.870000000000005
          - type: mrr_at_100
            value: 48.681999999999995
          - type: mrr_at_1000
            value: 48.703
          - type: mrr_at_3
            value: 44.341
          - type: mrr_at_5
            value: 46.547
          - type: ndcg_at_1
            value: 33.98
          - type: ndcg_at_10
            value: 52.957
          - type: ndcg_at_100
            value: 57.434
          - type: ndcg_at_1000
            value: 58.103
          - type: ndcg_at_3
            value: 44.896
          - type: ndcg_at_5
            value: 49.353
          - type: precision_at_1
            value: 33.98
          - type: precision_at_10
            value: 8.786
          - type: precision_at_100
            value: 1.1280000000000001
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 20.577
          - type: precision_at_5
            value: 14.942
          - type: recall_at_1
            value: 30.043
          - type: recall_at_10
            value: 73.593
          - type: recall_at_100
            value: 93.026
          - type: recall_at_1000
            value: 97.943
          - type: recall_at_3
            value: 52.955
          - type: recall_at_5
            value: 63.132
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.808
          - type: map_at_10
            value: 84.675
          - type: map_at_100
            value: 85.322
          - type: map_at_1000
            value: 85.33800000000001
          - type: map_at_3
            value: 81.68900000000001
          - type: map_at_5
            value: 83.543
          - type: mrr_at_1
            value: 81.5
          - type: mrr_at_10
            value: 87.59700000000001
          - type: mrr_at_100
            value: 87.705
          - type: mrr_at_1000
            value: 87.70599999999999
          - type: mrr_at_3
            value: 86.607
          - type: mrr_at_5
            value: 87.289
          - type: ndcg_at_1
            value: 81.51
          - type: ndcg_at_10
            value: 88.41799999999999
          - type: ndcg_at_100
            value: 89.644
          - type: ndcg_at_1000
            value: 89.725
          - type: ndcg_at_3
            value: 85.49900000000001
          - type: ndcg_at_5
            value: 87.078
          - type: precision_at_1
            value: 81.51
          - type: precision_at_10
            value: 13.438
          - type: precision_at_100
            value: 1.532
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.363
          - type: precision_at_5
            value: 24.57
          - type: recall_at_1
            value: 70.808
          - type: recall_at_10
            value: 95.575
          - type: recall_at_100
            value: 99.667
          - type: recall_at_1000
            value: 99.98899999999999
          - type: recall_at_3
            value: 87.223
          - type: recall_at_5
            value: 91.682
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 58.614831329137715
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 66.86580408560826
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.093
          - type: map_at_10
            value: 13.014000000000001
          - type: map_at_100
            value: 15.412999999999998
          - type: map_at_1000
            value: 15.756999999999998
          - type: map_at_3
            value: 9.216000000000001
          - type: map_at_5
            value: 11.036999999999999
          - type: mrr_at_1
            value: 25.1
          - type: mrr_at_10
            value: 37.133
          - type: mrr_at_100
            value: 38.165
          - type: mrr_at_1000
            value: 38.198
          - type: mrr_at_3
            value: 33.217
          - type: mrr_at_5
            value: 35.732
          - type: ndcg_at_1
            value: 25.1
          - type: ndcg_at_10
            value: 21.918000000000003
          - type: ndcg_at_100
            value: 30.983
          - type: ndcg_at_1000
            value: 36.629
          - type: ndcg_at_3
            value: 20.544999999999998
          - type: ndcg_at_5
            value: 18.192
          - type: precision_at_1
            value: 25.1
          - type: precision_at_10
            value: 11.44
          - type: precision_at_100
            value: 2.459
          - type: precision_at_1000
            value: 0.381
          - type: precision_at_3
            value: 19.267
          - type: precision_at_5
            value: 16.16
          - type: recall_at_1
            value: 5.093
          - type: recall_at_10
            value: 23.215
          - type: recall_at_100
            value: 49.902
          - type: recall_at_1000
            value: 77.403
          - type: recall_at_3
            value: 11.733
          - type: recall_at_5
            value: 16.372999999999998
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.9365442977452
          - type: cos_sim_spearman
            value: 79.36960687383745
          - type: euclidean_pearson
            value: 79.6045204840714
          - type: euclidean_spearman
            value: 79.26382712751337
          - type: manhattan_pearson
            value: 79.4805084789529
          - type: manhattan_spearman
            value: 79.21847863209523
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 83.27906192961453
          - type: cos_sim_spearman
            value: 74.38364712099211
          - type: euclidean_pearson
            value: 78.54358927241223
          - type: euclidean_spearman
            value: 74.22185560806376
          - type: manhattan_pearson
            value: 78.50904327377751
          - type: manhattan_spearman
            value: 74.2627500781748
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 84.66863742649639
          - type: cos_sim_spearman
            value: 84.70630905216271
          - type: euclidean_pearson
            value: 84.64498334705334
          - type: euclidean_spearman
            value: 84.87204770690148
          - type: manhattan_pearson
            value: 84.65774227976077
          - type: manhattan_spearman
            value: 84.91251851797985
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.1577763924467
          - type: cos_sim_spearman
            value: 80.10314039230198
          - type: euclidean_pearson
            value: 81.51346991046043
          - type: euclidean_spearman
            value: 80.08678485109435
          - type: manhattan_pearson
            value: 81.57058914661894
          - type: manhattan_spearman
            value: 80.1516230725106
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.40310839662533
          - type: cos_sim_spearman
            value: 87.16293477217867
          - type: euclidean_pearson
            value: 86.50688711184775
          - type: euclidean_spearman
            value: 87.08651444923031
          - type: manhattan_pearson
            value: 86.54674677557857
          - type: manhattan_spearman
            value: 87.15079017870971
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 84.32886275207817
          - type: cos_sim_spearman
            value: 85.0190460590732
          - type: euclidean_pearson
            value: 84.42553652784679
          - type: euclidean_spearman
            value: 85.20027364279328
          - type: manhattan_pearson
            value: 84.42926246281078
          - type: manhattan_spearman
            value: 85.20187419804306
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 90.76732216967812
          - type: cos_sim_spearman
            value: 90.63701653633909
          - type: euclidean_pearson
            value: 90.26678186114682
          - type: euclidean_spearman
            value: 90.67288073455427
          - type: manhattan_pearson
            value: 90.20772020584582
          - type: manhattan_spearman
            value: 90.60764863983702
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 69.09280387698125
          - type: cos_sim_spearman
            value: 68.62743151172162
          - type: euclidean_pearson
            value: 69.89386398104689
          - type: euclidean_spearman
            value: 68.71191066733556
          - type: manhattan_pearson
            value: 69.92516500604872
          - type: manhattan_spearman
            value: 68.80452846992576
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 86.13178592019887
          - type: cos_sim_spearman
            value: 86.03947178806887
          - type: euclidean_pearson
            value: 85.87029414285313
          - type: euclidean_spearman
            value: 86.04960843306998
          - type: manhattan_pearson
            value: 85.92946858580146
          - type: manhattan_spearman
            value: 86.12575341860442
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 85.16657063002837
          - type: mrr
            value: 95.73671063867141
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 63.510999999999996
          - type: map_at_10
            value: 72.76899999999999
          - type: map_at_100
            value: 73.303
          - type: map_at_1000
            value: 73.32499999999999
          - type: map_at_3
            value: 70.514
          - type: map_at_5
            value: 71.929
          - type: mrr_at_1
            value: 66.333
          - type: mrr_at_10
            value: 73.75
          - type: mrr_at_100
            value: 74.119
          - type: mrr_at_1000
            value: 74.138
          - type: mrr_at_3
            value: 72.222
          - type: mrr_at_5
            value: 73.122
          - type: ndcg_at_1
            value: 66.333
          - type: ndcg_at_10
            value: 76.774
          - type: ndcg_at_100
            value: 78.78500000000001
          - type: ndcg_at_1000
            value: 79.254
          - type: ndcg_at_3
            value: 73.088
          - type: ndcg_at_5
            value: 75.002
          - type: precision_at_1
            value: 66.333
          - type: precision_at_10
            value: 9.833
          - type: precision_at_100
            value: 1.093
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.222
          - type: precision_at_5
            value: 18.333
          - type: recall_at_1
            value: 63.510999999999996
          - type: recall_at_10
            value: 87.98899999999999
          - type: recall_at_100
            value: 96.5
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 77.86699999999999
          - type: recall_at_5
            value: 82.73899999999999
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.78514851485149
          - type: cos_sim_ap
            value: 94.94214383862038
          - type: cos_sim_f1
            value: 89.02255639097744
          - type: cos_sim_precision
            value: 89.2462311557789
          - type: cos_sim_recall
            value: 88.8
          - type: dot_accuracy
            value: 99.78217821782178
          - type: dot_ap
            value: 94.69965247836805
          - type: dot_f1
            value: 88.78695208970439
          - type: dot_precision
            value: 90.54054054054053
          - type: dot_recall
            value: 87.1
          - type: euclidean_accuracy
            value: 99.78118811881188
          - type: euclidean_ap
            value: 94.9865187695411
          - type: euclidean_f1
            value: 88.99950223992036
          - type: euclidean_precision
            value: 88.60257680872151
          - type: euclidean_recall
            value: 89.4
          - type: manhattan_accuracy
            value: 99.78811881188119
          - type: manhattan_ap
            value: 95.0021236766459
          - type: manhattan_f1
            value: 89.12071535022356
          - type: manhattan_precision
            value: 88.54886475814413
          - type: manhattan_recall
            value: 89.7
          - type: max_accuracy
            value: 99.78811881188119
          - type: max_ap
            value: 95.0021236766459
          - type: max_f1
            value: 89.12071535022356
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 68.93190546593995
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 37.602808534760655
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 52.29214480978073
          - type: mrr
            value: 53.123169722434426
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.967800769650022
          - type: cos_sim_spearman
            value: 31.168490040206926
          - type: dot_pearson
            value: 30.888603021128553
          - type: dot_spearman
            value: 31.028241262520385
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22300000000000003
          - type: map_at_10
            value: 1.781
          - type: map_at_100
            value: 9.905999999999999
          - type: map_at_1000
            value: 23.455000000000002
          - type: map_at_3
            value: 0.569
          - type: map_at_5
            value: 0.918
          - type: mrr_at_1
            value: 84
          - type: mrr_at_10
            value: 91.067
          - type: mrr_at_100
            value: 91.067
          - type: mrr_at_1000
            value: 91.067
          - type: mrr_at_3
            value: 90.667
          - type: mrr_at_5
            value: 91.067
          - type: ndcg_at_1
            value: 78
          - type: ndcg_at_10
            value: 73.13499999999999
          - type: ndcg_at_100
            value: 55.32
          - type: ndcg_at_1000
            value: 49.532
          - type: ndcg_at_3
            value: 73.715
          - type: ndcg_at_5
            value: 72.74199999999999
          - type: precision_at_1
            value: 84
          - type: precision_at_10
            value: 78.8
          - type: precision_at_100
            value: 56.32
          - type: precision_at_1000
            value: 21.504
          - type: precision_at_3
            value: 77.333
          - type: precision_at_5
            value: 78
          - type: recall_at_1
            value: 0.22300000000000003
          - type: recall_at_10
            value: 2.049
          - type: recall_at_100
            value: 13.553
          - type: recall_at_1000
            value: 46.367999999999995
          - type: recall_at_3
            value: 0.604
          - type: recall_at_5
            value: 1.015
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 3.0380000000000003
          - type: map_at_10
            value: 10.188
          - type: map_at_100
            value: 16.395
          - type: map_at_1000
            value: 18.024
          - type: map_at_3
            value: 6.236
          - type: map_at_5
            value: 7.276000000000001
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 46.292
          - type: mrr_at_100
            value: 47.446
          - type: mrr_at_1000
            value: 47.446
          - type: mrr_at_3
            value: 41.156
          - type: mrr_at_5
            value: 44.32
          - type: ndcg_at_1
            value: 32.653
          - type: ndcg_at_10
            value: 25.219
          - type: ndcg_at_100
            value: 37.802
          - type: ndcg_at_1000
            value: 49.274
          - type: ndcg_at_3
            value: 28.605999999999998
          - type: ndcg_at_5
            value: 26.21
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 21.837
          - type: precision_at_100
            value: 7.776
          - type: precision_at_1000
            value: 1.522
          - type: precision_at_3
            value: 28.571
          - type: precision_at_5
            value: 25.306
          - type: recall_at_1
            value: 3.0380000000000003
          - type: recall_at_10
            value: 16.298000000000002
          - type: recall_at_100
            value: 48.712
          - type: recall_at_1000
            value: 83.16799999999999
          - type: recall_at_3
            value: 7.265000000000001
          - type: recall_at_5
            value: 9.551
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 83.978
          - type: ap
            value: 24.751887949330015
          - type: f1
            value: 66.8685134049279
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.573288058856825
          - type: f1
            value: 61.973261751726604
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 48.75483298792469
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 86.36824223639506
          - type: cos_sim_ap
            value: 75.53126388573047
          - type: cos_sim_f1
            value: 67.9912831688245
          - type: cos_sim_precision
            value: 66.11817501869858
          - type: cos_sim_recall
            value: 69.9736147757256
          - type: dot_accuracy
            value: 86.39804494248078
          - type: dot_ap
            value: 75.27598891718046
          - type: dot_f1
            value: 67.91146284159763
          - type: dot_precision
            value: 63.90505003490807
          - type: dot_recall
            value: 72.45382585751979
          - type: euclidean_accuracy
            value: 86.36228169517793
          - type: euclidean_ap
            value: 75.51438087434647
          - type: euclidean_f1
            value: 68.02370523061066
          - type: euclidean_precision
            value: 66.46525679758308
          - type: euclidean_recall
            value: 69.65699208443272
          - type: manhattan_accuracy
            value: 86.46361089586935
          - type: manhattan_ap
            value: 75.50800785730111
          - type: manhattan_f1
            value: 67.9220437187253
          - type: manhattan_precision
            value: 67.79705573080967
          - type: manhattan_recall
            value: 68.04749340369392
          - type: max_accuracy
            value: 86.46361089586935
          - type: max_ap
            value: 75.53126388573047
          - type: max_f1
            value: 68.02370523061066
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.80350836341057
          - type: cos_sim_ap
            value: 85.51101933260743
          - type: cos_sim_f1
            value: 77.9152271629704
          - type: cos_sim_precision
            value: 75.27815662910056
          - type: cos_sim_recall
            value: 80.74376347397599
          - type: dot_accuracy
            value: 88.84425815966158
          - type: dot_ap
            value: 85.49726945962519
          - type: dot_f1
            value: 77.94445269567801
          - type: dot_precision
            value: 75.27251864601261
          - type: dot_recall
            value: 80.81305820757623
          - type: euclidean_accuracy
            value: 88.80350836341057
          - type: euclidean_ap
            value: 85.4882880790211
          - type: euclidean_f1
            value: 77.87063284615103
          - type: euclidean_precision
            value: 74.61022927689595
          - type: euclidean_recall
            value: 81.42901139513397
          - type: manhattan_accuracy
            value: 88.7161873714441
          - type: manhattan_ap
            value: 85.45753871906821
          - type: manhattan_f1
            value: 77.8686401480111
          - type: manhattan_precision
            value: 74.95903683123174
          - type: manhattan_recall
            value: 81.01324299353249
          - type: max_accuracy
            value: 88.84425815966158
          - type: max_ap
            value: 85.51101933260743
          - type: max_f1
            value: 77.94445269567801

gte-base-en-v1.5

We introduce gte-v1.5 series, upgraded gte embeddings that support the context length of up to 8192, while further enhancing model performance. The models are built upon the transformer++ encoder backbone (BERT + RoPE + GLU).

The gte-v1.5 series achieve state-of-the-art scores on the MTEB benchmark within the same model size category and prodvide competitive on the LoCo long-context retrieval tests (refer to Evaluation).

We also present the gte-Qwen1.5-7B-instruct, a SOTA instruction-tuned multi-lingual embedding model that ranked 2nd in MTEB and 1st in C-MTEB.

  • Developed by: Institute for Intelligent Computing, Alibaba Group
  • Model type: Text Embeddings
  • Paper: Coming soon.

Model list

Models Language Model Size Max Seq. Length Dimension MTEB-en LoCo
gte-Qwen1.5-7B-instruct Multiple 7720 32768 4096 67.34 87.57
gte-large-en-v1.5 English 434 8192 1024 65.39 86.71
gte-base-en-v1.5 English 137 8192 768 64.11 87.44

How to Get Started with the Model

Use the code below to get started with the model.

# Requires transformers>=4.36.0

import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer

input_texts = [
    "what is the capital of China?",
    "how to implement quick sort in python?",
    "Beijing",
    "sorting algorithms"
]

model_path = 'Alibaba-NLP/gte-base-en-v1.5'
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = outputs.last_hidden_state[:, 0]
 
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())

It is recommended to install xformers and enable unpadding for acceleration, refer to enable-unpadding-and-xformers.

Use with sentence-transformers:

# Requires sentence_transformers>=2.7.0

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = ['That is a happy person', 'That is a very happy person']

model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))

Use with transformers.js:

// npm i @xenova/transformers
import { pipeline, dot } from '@xenova/transformers';

// Create feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Alibaba-NLP/gte-base-en-v1.5', {
    quantized: false, // Comment out this line to use the quantized version
});

// Generate sentence embeddings
const sentences = [
    "what is the capital of China?",
    "how to implement quick sort in python?",
    "Beijing",
    "sorting algorithms"
]
const output = await extractor(sentences, { normalize: true, pooling: 'cls' });

// Compute similarity scores
const [source_embeddings, ...document_embeddings ] = output.tolist();
const similarities = document_embeddings.map(x => 100 * dot(source_embeddings, x));
console.log(similarities); // [34.504930869007296, 64.03973265120138, 19.520042686034362]

Training Details

Training Data

  • Masked language modeling (MLM): c4-en
  • Weak-supervised contrastive (WSC) pre-training: GTE pre-training data
  • Supervised contrastive fine-tuning: GTE fine-tuning data

Training Procedure

To enable the backbone model to support a context length of 8192, we adopted a multi-stage training strategy. The model first undergoes preliminary MLM pre-training on shorter lengths. And then, we resample the data, reducing the proportion of short texts, and continue the MLM pre-training.

The entire training process is as follows:

  • MLM-2048: lr 5e-4, mlm_probability 0.3, batch_size 4096, num_steps 70000, rope_base 10000
  • MLM-8192: lr 5e-5, mlm_probability 0.3, batch_size 1024, num_steps 20000, rope_base 500000
  • WSC: max_len 512, lr 2e-4, batch_size 32768, num_steps 100000
  • Fine-tuning: TODO

Evaluation

MTEB

The results of other models are retrieved from MTEB leaderboard.

The gte evaluation setting: mteb==1.2.0, fp16 auto mix precision, max_length=8192, and set ntk scaling factor to 2 (equivalent to rope_base * 2).

Model Name Param Size (M) Dimension Sequence Length Average (56) Class. (12) Clust. (11) Pair Class. (3) Reran. (4) Retr. (15) STS (10) Summ. (1)
gte-large-en-v1.5 434 1024 8192 65.39 77.75 47.95 84.63 58.50 57.91 81.43 30.91
mxbai-embed-large-v1 335 1024 512 64.68 75.64 46.71 87.2 60.11 54.39 85 32.71
multilingual-e5-large-instruct 560 1024 514 64.41 77.56 47.1 86.19 58.58 52.47 84.78 30.39
bge-large-en-v1.5 335 1024 512 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
gte-base-en-v1.5 137 768 8192 64.11 77.17 46.82 85.33 57.66 54.09 81.97 31.17
bge-base-en-v1.5 109 768 512 63.55 75.53 45.77 86.55 58.86 53.25 82.4 31.07

LoCo

Model Name Dimension Sequence Length Average (5) QsmsumRetrieval SummScreenRetrieval QasperAbastractRetrieval QasperTitleRetrieval GovReportRetrieval
gte-qwen1.5-7b 4096 32768 87.57 49.37 93.10 99.67 97.54 98.21
gte-large-v1.5 1024 8192 86.71 44.55 92.61 99.82 97.81 98.74
gte-base-v1.5 768 8192 87.44 49.91 91.78 99.82 97.13 98.58

Citation

If you find our paper or models helpful, please consider citing them as follows:

@article{li2023towards,
  title={Towards general text embeddings with multi-stage contrastive learning},
  author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
  journal={arXiv preprint arXiv:2308.03281},
  year={2023}
}