|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
**English** | [中文](./README_zh.md) |
|
|
|
## Code implementation of new GTE embeddings |
|
|
|
This model is a BERT-like encoder with the following optimizations implemented: |
|
|
|
1. Replacing absolute position embeddings with RoPE [^1]. |
|
2. Substituting the conventional activation functions with Gated Linear Units (GLU) [^2]. |
|
3. Setting attention dropout to 0 to use `xformers` and `flash_attn`. |
|
4. Using unpadding to eliminate the needless computations for padding tokens [^3]. (this is off by default and should be used in conjunction with `xformers` for optimal acceleration). |
|
5. Setting `vocab_size` as a multiple of 64. |
|
|
|
### Recommendation: Enable Unpadding and Acceleration with `xformers` |
|
|
|
This code supports the acceleration of attention computations using `xformers`, which can automatically choose the optimal implementation based on the type of device, such as `flash_attn`. Therefore, we can also achieve significant acceleration on old devices like the V100. |
|
|
|
|
|
Firstly, install `xformers` (with `pytorch` pre-installed): |
|
``` |
|
if pytorch is installed using conda: |
|
conda install xformers -c xformers |
|
elif pytorch is installed using pip: |
|
# cuda 11.8 version |
|
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118 |
|
# cuda 12.1 version |
|
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121 |
|
``` |
|
For more information, refer to [Installing xformers](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers). |
|
|
|
Then, when loading the model, set `unpad_inputs` and `use_memory_efficient_attention` to `true`, and enable `fp16` mixed precision computation to achieve the fastest acceleration. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
path = 'Alibaba-NLP/gte-base-en-v1.5' |
|
device = torch.device('cuda') |
|
tokenzier = AutoTokenizer.from_pretrained(path) |
|
model = AutoModel.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
unpad_inputs=True, |
|
use_memory_efficient_attention=True, |
|
).to(device) |
|
|
|
with torch.autocast(device_type=device.type, dtype=torch.float16): # or bfloat16 |
|
with torch.inference_mode(): |
|
outputs = model(**inputs.to(device)) |
|
|
|
``` |
|
|
|
Alternatively, you can directly modify the `unpad_inputs` and `use_memory_efficient_attention` settings to `true` in the model's `config.json`, eliminating the need to set them in the code. |
|
|
|
|
|
--- |
|
|
|
<details> |
|
<summary> Clarification of Relationship with nomic-embed and nomicBERT </summary> |
|
|
|
One may question the originality of our work and consider it a mere replication of `nomicBERT`. To clarify, our work is parallel but stems from the same idea as `nomicBERT`. |
|
|
|
Applying RoPE and GLU to BERT to support longer texts is a straightforward idea. Our exploration of the transformer++ encoder (i.e., BERT + RoPE + GLU) began in August 2023. |
|
And by November 2023, we had completed the `gte-base-en-v1.1`. Then, I went on to prepare for the ACL submission of the other project... |
|
|
|
The release of `nomic-embed` [^4] brought to our attention the pressure, as well as provided us with more resources, which allowed us to continue with this project. |
|
Without the outstanding work of `nomicai`, the release of `gte-v1.5` could have been delayed much longer. Thanks! |
|
|
|
</details> |
|
|
|
--- |
|
|
|
[^1]: Su, Jianlin, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. "Roformer: Enhanced transformer with rotary position embedding." Neurocomputing 568 (2024): 127063. |
|
|
|
[^2]: Shazeer, Noam. "Glu variants improve transformer." arXiv preprint arXiv:2002.05202 (2020). |
|
|
|
[^3]: Portes, Jacob, Alexander Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil Sardana, Daya Khudia, and Jonathan Frankle. "MosaicBERT: A Bidirectional Encoder Optimized for Fast Pretraining." Advances in Neural Information Processing Systems 36 (2024). |
|
|
|
[^4]: Nussbaum, Zach, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. "Nomic Embed: Training a Reproducible Long Context Text Embedder." arXiv preprint arXiv:2402.01613 (2024). |