xlm-roberta-large-finetuned-wikiner-fr

This model is a fine-tuned version of xlm-roberta-large on the Alizee/wikiner_fr_mixed_caps.

Why this model?

Credits to Jean-Baptiste for building the current "best" model for French NER "camembert-ner" based on wikiNER (Jean-Baptiste/wikiner_fr).

xlm-roberta-large models fine-tuned on conll03 English and especially German were outperforming the Camembert-NER model in my own tasks. This inspired me to build a French version of the xlm-roberta-large models based on the wikiNER dataset, with the hope to create a slightly improved standard for French 4-entity NER.

Intended uses & limitations

4-entity NER for French, with the following tags:

Abbreviation Description
O Outside of a named entity
MISC Miscellaneous entity
PER Person’s name
ORG Organization
LOC Location

Performance

It achieves the following results on the evaluation set:

  • Loss: 0.0518
  • Precision: 0.8881
  • Recall: 0.9014
  • F1: 0.8947
  • Accuracy: 0.9855

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1032 0.1 374 0.0853 0.7645 0.8170 0.7899 0.9742
0.0767 0.2 748 0.0721 0.8111 0.8423 0.8264 0.9785
0.074 0.3 1122 0.0655 0.8252 0.8502 0.8375 0.9797
0.0634 0.4 1496 0.0629 0.8423 0.8694 0.8556 0.9809
0.0605 0.5 1870 0.0610 0.8515 0.8711 0.8612 0.9808
0.0578 0.6 2244 0.0594 0.8633 0.8744 0.8688 0.9822
0.0592 0.7 2618 0.0555 0.8624 0.8833 0.8727 0.9825
0.0567 0.8 2992 0.0534 0.8626 0.8838 0.8731 0.9830
0.0522 0.9 3366 0.0563 0.8560 0.8771 0.8664 0.9818
0.0516 1.0 3739 0.0556 0.8702 0.8869 0.8785 0.9831
0.0438 1.0 3740 0.0558 0.8712 0.8873 0.8792 0.9831
0.0395 1.1 4114 0.0565 0.8696 0.8856 0.8775 0.9830
0.0371 1.2 4488 0.0536 0.8762 0.8910 0.8835 0.9838
0.0403 1.3 4862 0.0531 0.8709 0.8887 0.8797 0.9835
0.0366 1.4 5236 0.0517 0.8791 0.8912 0.8851 0.9843
0.037 1.5 5610 0.0510 0.8830 0.8936 0.8883 0.9847
0.0368 1.6 5984 0.0492 0.8795 0.8940 0.8867 0.9845
0.0359 1.7 6358 0.0501 0.8833 0.8986 0.8909 0.9850
0.034 1.8 6732 0.0496 0.8852 0.8986 0.8918 0.9852
0.0327 1.9 7106 0.0512 0.8762 0.8948 0.8854 0.9843
0.0325 2.0 7478 0.0512 0.8829 0.8945 0.8887 0.9844
0.01 2.0 7480 0.0512 0.8836 0.8945 0.8890 0.9843
0.0232 2.1 7854 0.0526 0.8870 0.9002 0.8936 0.9852
0.0235 2.2 8228 0.0530 0.8841 0.8983 0.8911 0.9848
0.0211 2.3 8602 0.0542 0.8875 0.9008 0.8941 0.9852
0.0235 2.4 8976 0.0525 0.8883 0.9008 0.8945 0.9855
0.0232 2.5 9350 0.0525 0.8874 0.9013 0.8943 0.9855
0.0238 2.6 9724 0.0517 0.8861 0.9011 0.8935 0.9854
0.0223 2.7 10098 0.0513 0.8893 0.9016 0.8954 0.9856
0.0226 2.8 10472 0.0517 0.8892 0.9017 0.8954 0.9856
0.0228 2.9 10846 0.0517 0.8879 0.9013 0.8945 0.9855
0.0235 3.0 11217 0.0518 0.8881 0.9014 0.8947 0.9855

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Alizee/xlm-roberta-large-finetuned-wikiner-fr

Finetuned
(345)
this model

Dataset used to train Alizee/xlm-roberta-large-finetuned-wikiner-fr