|
--- |
|
license: apache-2.0 |
|
tags: |
|
- text-to-image |
|
- safetensors |
|
- diffusers |
|
datasets: |
|
- JourneyDB/JourneyDB |
|
library_name: diffusers |
|
pipeline_tag: text-to-image |
|
--- |
|
|
|
# Lumina-Next-SFT |
|
|
|
The `Lumina-Next-SFT` is a Next-DiT model containing 2B parameters and utilizes [Gemma-2B](https://huggingface.co/google/gemma-2b) as the text encoder, enhanced through high-quality supervised fine-tuning (SFT). |
|
|
|
Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai. |
|
|
|
- Generation Model: Next-DiT |
|
- Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b) |
|
- VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae) |
|
|
|
[![Lumina-Next](https://img.shields.io/badge/Paper-Lumina--Next-2b9348.svg?logo=arXiv)](https://github.com/Alpha-VLLM/Lumina-T2X/blob/main/assets/lumina-next.pdf) |
|
[Lumina-T2X paper](https://arxiv.org/abs/2405.05945) |
|
|
|
![hero](https://github.com/Alpha-VLLM/Lumina-T2X/assets/54879512/9f52eabb-07dc-4881-8257-6d8a5f2a0a5a) |
|
|
|
## ๐ฐ News |
|
|
|
- **[2024-07-08] ๐๐๐ Lumina-Next is now supported in the [diffusers](https://github.com/huggingface/diffusers)! Thanks to [@yiyixuxu](https://github.com/yiyixuxu) and [@sayakpaul](https://github.com/sayakpaul)!** |
|
|
|
- [2024-06-08] ๐๐๐ We have released the `Lumina-Next-SFT` model. |
|
|
|
- [2024-05-28] We updated the `Lumina-Next-T2I` model to support 2K Resolution image generation. |
|
|
|
- [2024-05-16] We have converted the `.pth` weights to `.safetensors` weights. Please pull the latest code to use `demo.py` for inference. |
|
|
|
- [2024-05-12] We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model. |
|
|
|
## ๐ฎ Model Zoo |
|
|
|
More checkpoints of our model will be released soon~ |
|
|
|
| Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL | |
|
| ---------- | ----------------------- | ------------ | -----------|-------------- | |
|
| 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers) | |
|
|
|
## Installation |
|
|
|
### 1. Create a conda environment and install PyTorch |
|
|
|
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version). |
|
|
|
```bash |
|
conda create -n Lumina_T2X -y |
|
conda activate Lumina_T2X |
|
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y |
|
``` |
|
|
|
### 2. Install dependencies |
|
|
|
```bash |
|
pip install diffusers huggingface_hub |
|
``` |
|
|
|
### 3. Install ``flash-attn`` |
|
|
|
```bash |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
|
|
## Inference |
|
|
|
|
|
1. Prepare the pre-trained model |
|
|
|
โญโญ (Recommended) you can use huggingface_cli to download our model: |
|
|
|
```bash |
|
huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-SFT-diffusers --local-dir /path/to/ckpt |
|
``` |
|
|
|
2. Run with demo code: |
|
|
|
```python |
|
from diffusers import LuminaText2ImgPipeline |
|
import torch |
|
|
|
pipeline = LuminaText2ImgPipeline.from_pretrained("/path/to/ckpt/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
# or you can download the model using code directly |
|
# pipeline = LuminaText2ImgPipeline.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. " |
|
"Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0] |
|
``` |
|
|