Lumina-Next-T2I
The Lumina-Next-T2I
model uses Next-DiT with a 2B parameters model as well as using Gemma-2B as a text encoder. Compared with Lumina-T2I
, it has faster inference speed, richer generation style, and more multilingual support, etc.
Our generative model has Next-DiT
as the backbone, the text encoder is the Gemma
2B model, and the VAE uses a version of sdxl
fine-tuned by stabilityai.
- Generation Model: Next-DiT
- Text Encoder: Gemma-2B
- VAE: stabilityai/sdxl-vae
๐ฐ News
[2024-5-28] ๐๐๐ We updated the
Lumina-Next-T2I
model to support 2K Resolution image generation.[2024-5-16] โโโ We have converted the
.pth
weights to.safetensors
weights. Please pull the latest code to usedemo.py
for inference.[2024-5-12] ๐๐๐ We release the next version of
Lumina-T2I
, calledLumina-Next-T2I
for faster and lower memory usage image generation model.
๐ฎ Model Zoo
More checkpoints of our model will be released soon~
Resolution | Next-DiT Parameter | Text Encoder | Prediction | Download URL |
---|---|---|---|---|
1024 | 2B | Gemma-2B | Rectified Flow | hugging face |
Installation
Before installation, ensure that you have a working nvcc
# The command should work and show the same version number as in our case. (12.1 in our case).
nvcc --version
On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of
gcc
is available
# The command should work and show a version of at least 6.0.
# If not, consult distro-specific tutorials to obtain a newer version or build manually.
gcc --version
Downloading Lumina-T2X repo from GitHub:
git clone https://github.com/Alpha-VLLM/Lumina-T2X
1. Create a conda environment and install PyTorch
Note: You may want to adjust the CUDA version according to your driver version.
conda create -n Lumina_T2X -y
conda activate Lumina_T2X
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
2. Install dependencies
pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click
or you can use
cd lumina_next_t2i
pip install -r requirements.txt
3. Install flash-attn
pip install flash-attn --no-build-isolation
4. Install nvidia apex (optional)
While Apex can improve efficiency, it is not a must to make Lumina-T2X work.
Note that Lumina-T2X works smoothly with either:
- Apex not installed at all; OR
- Apex successfully installed with CUDA and C++ extensions.
However, it will fail when:
- A Python-only build of Apex is installed.
If the error
No module named 'fused_layer_norm_cuda'
appears, it typically means you are using a Python-only build of Apex. To resolve this, please runpip uninstall apex
, and Lumina-T2X should then function correctly.
You can clone the repo and install following the official guidelines (note that we expect a full build, i.e., with CUDA and C++ extensions)
pip install ninja
git clone https://github.com/NVIDIA/apex
cd apex
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
# otherwise
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
Inference
To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.
CLI
- Install Lumina-Next-T2I
pip install -e .
- Prepare the pre-trained model
โญโญ (Recommended) you can use huggingface_cli to download our model:
huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-T2I --local-dir /path/to/ckpt
or using git for cloning the model you want to use:
git clone https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I
- Setting your personal inference configuration
Update your own personal inference settings to generate different styles of images, checking config/infer/config.yaml
for detailed settings. Detailed config structure:
/path/to/ckpt
should be a directory containingconsolidated*.pth
andmodel_args.pth
- settings:
model:
ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.
transport:
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
prediction: "velocity" # option: ["velocity", "score", "noise"]
loss_weight: "velocity" # option: [None, "velocity", "likelihood"]
sample_eps: 0.1
train_eps: 0.2
ode:
atol: 1e-6 # Absolute tolerance
rtol: 1e-3 # Relative tolerance
reverse: false # option: true or false
likelihood: false # option: true or false
infer:
resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
num_sampling_steps: 60 # range: 1-1000
cfg_scale: 4. # range: 1-20
solver: "euler" # option: ["euler", "dopri5", "dopri8"]
t_shift: 4 # range: 1-20 (int only)
ntk_scaling: true # option: true or false
proportional_attn: true # option: true or false
seed: 0 # rnage: any number
- model:
ckpt
: lumina-next-t2i checkpoint path from huggingface repo containingconsolidated*.pth
andmodel_args.pth
.ckpt_lm
: LLM checkpoint.token
: huggingface access token for accessing gated repo.
- transport:
path_type
: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).prediction
: the prediction model for the transport dynamics.loss_weight
: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weightingsample_eps
: sampling in the transport model.train_eps
: training to stabilize the learning process.
- ode:
atol
: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"])rtol
: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"])reverse
: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"])likelihood
: Enable calculation of likelihood during the ODE solving process.
- infer
resolution
: generated image resolution.num_sampling_steps
: sampling step for generating image.cfg_scale
: classifier-free guide scaling factorsolver
: solver for image generation.t_shift
: time shift factor.ntk_scaling
: ntk rope scaling factor.proportional_attn
: Whether to use proportional attention.seed
: random initialization seeds.
- Run with CLI
inference command:
lumina_next infer -c <config_path> <caption_here> <output_dir>
e.g. Demo command:
cd lumina_next_t2i
lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs"
Web Demo
To host a local gradio demo for interactive inference, run the following command:
# `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
# default
python -u demo.py --ckpt "/path/to/ckpt"
# the demo by default uses bf16 precision. to switch to fp32:
python -u demo.py --ckpt "/path/to/ckpt" --precision fp32
# use ema model
python -u demo.py --ckpt "/path/to/ckpt" --ema
- Downloads last month
- 57