Ammar-alhaj-ali commited on
Commit
e4fb2f6
1 Parent(s): e96c6be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -85
README.md CHANGED
@@ -21,16 +21,16 @@ model-index:
21
  metrics:
22
  - name: Precision
23
  type: precision
24
- value: 0.9026198714780029
25
  - name: Recall
26
  type: recall
27
- value: 0.913
28
  - name: F1
29
  type: f1
30
- value: 0.9077802634849614
31
  - name: Accuracy
32
  type: accuracy
33
- value: 0.8330271015158475
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,86 +40,10 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 1.1164
44
- - Precision: 0.9026
45
- - Recall: 0.913
46
- - F1: 0.9078
47
- - Accuracy: 0.8330
48
 
49
- ## Model description
50
 
51
- More information needed
52
-
53
- ## Intended uses & limitations
54
-
55
- More information needed
56
-
57
- ## Training and evaluation data
58
-
59
- More information needed
60
-
61
- ## Training procedure
62
-
63
- ### Training hyperparameters
64
-
65
- The following hyperparameters were used during training:
66
- - learning_rate: 1e-05
67
- - train_batch_size: 16
68
- - eval_batch_size: 16
69
- - seed: 42
70
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
- - lr_scheduler_type: linear
72
- - training_steps: 1000
73
-
74
- ### Training results
75
-
76
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
- | No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
79
- | No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
80
- | No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
81
- | No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
82
- | 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
83
- | 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
84
- | 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
85
- | 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
86
- | 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
87
- | 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
88
- | No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
89
- | No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
90
- | No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
91
- | No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
92
- | 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
93
- | 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
94
- | 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
95
- | 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
96
- | 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
97
- | 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
98
-
99
-
100
- [4000/4000 20:34, Epoch 53/54]
101
- Step Training Loss Validation Loss Precision Recall F1 Accuracy
102
- 250 No log 0.435449 0.854588 0.902136 0.877719 0.835968
103
- 500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177
104
- 750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085
105
- 1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097
106
- 1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625
107
- 1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575
108
- 1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128
109
- 2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728
110
- 2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519
111
- 2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637
112
- 2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986
113
- 3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384
114
- 3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979
115
- 3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552
116
- 3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433
117
- 4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552
118
-
119
-
120
- ### Framework versions
121
-
122
- - Transformers 4.19.0.dev0
123
- - Pytorch 1.11.0+cu113
124
- - Datasets 2.0.0
125
- - Tokenizers 0.11.6
 
21
  metrics:
22
  - name: Precision
23
  type: precision
24
+ value: 0.918177
25
  - name: Recall
26
  type: recall
27
+ value: 0.930949
28
  - name: F1
29
  type: f1
30
+ value: 0.924519
31
  - name: Accuracy
32
  type: accuracy
33
+ value: 0.859979
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 1.038318
44
+ - Precision: 0.918177
45
+ - Recall: 0.930949
46
+ - F1: 0.924519
47
+ - Accuracy: 0.859979
48
 
 
49