|
|
|
## LayoutLMv3-Fine-Tuning-Invoice Model |
|
|
|
#### Model description |
|
**LayoutLMv3-Fine-Tuning-Invoice Model** is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. For the fine-tuning, We used [Invoice Dataset] that includes 12 labels ('Other', 'ABN', 'BILLER', 'BILLER_ADDRESS', 'BILLER_POST_CODE', 'DUE_DATE', 'GST', 'INVOICE_DATE', 'INVOICE_NUMBER', 'SUBTOTAL', 'TOTAL', 'BILLER_ADDRESS'). |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. |
|
|
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.005334 |
|
- Precision: 1.0 |
|
- Recall: 1.0 |
|
- F1: 1.0 |
|
- Accuracy: 1.0 |
|
|
|
|
|
|
|
## Training procedure |
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 100 | 0.0878 | 0.968 | 0.9817 | 0.9748 | 0.9966 | |
|
| No log | 200 | 0.0241 | 0.972 | 0.9858 | 0.9789 | 0.9971 | |
|
| No log | 300 | 0.0186 | 0.972 | 0.9858 | 0.9789 | 0.9971 | |
|
| No log | 400 | 0.0184 | 0.9854 | 0.9574 | 0.9712 | 0.9956 | |
|
| 0.110800 | 500 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.110800 | 600 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.110800 | 700 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.110800 | 800 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.110800 | 900 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.004900 | 1000 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |