tao-8k / README.md
Amu's picture
Update README.md
bc783a1
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: tao-8k-origin
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 47.33644889578121
          - type: cos_sim_spearman
            value: 49.93968642502866
          - type: euclidean_pearson
            value: 48.12029792973887
          - type: euclidean_spearman
            value: 49.939666315145494
          - type: manhattan_pearson
            value: 48.07449594650583
          - type: manhattan_spearman
            value: 49.892461433911166
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 50.976148098905746
          - type: cos_sim_spearman
            value: 53.11230114448237
          - type: euclidean_pearson
            value: 55.119977161851054
          - type: euclidean_spearman
            value: 53.11229776647941
          - type: manhattan_pearson
            value: 55.096968162828034
          - type: manhattan_spearman
            value: 53.107481302419465
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 40.804
          - type: f1
            value: 39.01066543513968
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 62.843816050026824
          - type: cos_sim_spearman
            value: 65.54142642656706
          - type: euclidean_pearson
            value: 64.08809634876388
          - type: euclidean_spearman
            value: 65.54142642558392
          - type: manhattan_pearson
            value: 64.09391522108272
          - type: manhattan_spearman
            value: 65.55445491162718
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 40.028061591547804
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 38.1897102944254
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 85.34294439514511
          - type: mrr
            value: 88.03849206349206
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 85.81294364673899
          - type: mrr
            value: 88.52146825396825
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.982
          - type: map_at_10
            value: 36.21
          - type: map_at_100
            value: 38.072
          - type: map_at_1000
            value: 38.194
          - type: map_at_3
            value: 32.239000000000004
          - type: map_at_5
            value: 34.377
          - type: mrr_at_1
            value: 36.858999999999995
          - type: mrr_at_10
            value: 45.084999999999994
          - type: mrr_at_100
            value: 46.104
          - type: mrr_at_1000
            value: 46.154
          - type: mrr_at_3
            value: 42.623
          - type: mrr_at_5
            value: 43.995
          - type: ndcg_at_1
            value: 36.858999999999995
          - type: ndcg_at_10
            value: 42.735
          - type: ndcg_at_100
            value: 50.181
          - type: ndcg_at_1000
            value: 52.309000000000005
          - type: ndcg_at_3
            value: 37.728
          - type: ndcg_at_5
            value: 39.664
          - type: precision_at_1
            value: 36.858999999999995
          - type: precision_at_10
            value: 9.615
          - type: precision_at_100
            value: 1.564
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 21.514
          - type: precision_at_5
            value: 15.568999999999999
          - type: recall_at_1
            value: 23.982
          - type: recall_at_10
            value: 53.04600000000001
          - type: recall_at_100
            value: 84.113
          - type: recall_at_1000
            value: 98.37
          - type: recall_at_3
            value: 37.824999999999996
          - type: recall_at_5
            value: 44.023
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 77.71497294046902
          - type: cos_sim_ap
            value: 86.84526989595028
          - type: cos_sim_f1
            value: 79.31987247608926
          - type: cos_sim_precision
            value: 72.70601987142022
          - type: cos_sim_recall
            value: 87.2574234276362
          - type: dot_accuracy
            value: 77.71497294046902
          - type: dot_ap
            value: 86.83880734247957
          - type: dot_f1
            value: 79.31987247608926
          - type: dot_precision
            value: 72.70601987142022
          - type: dot_recall
            value: 87.2574234276362
          - type: euclidean_accuracy
            value: 77.71497294046902
          - type: euclidean_ap
            value: 86.84526869685902
          - type: euclidean_f1
            value: 79.31987247608926
          - type: euclidean_precision
            value: 72.70601987142022
          - type: euclidean_recall
            value: 87.2574234276362
          - type: manhattan_accuracy
            value: 77.8111846061335
          - type: manhattan_ap
            value: 86.81142881585656
          - type: manhattan_f1
            value: 79.4201671780764
          - type: manhattan_precision
            value: 72.53575570158485
          - type: manhattan_recall
            value: 87.74842179097499
          - type: max_accuracy
            value: 77.8111846061335
          - type: max_ap
            value: 86.84526989595028
          - type: max_f1
            value: 79.4201671780764
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 70.706
          - type: map_at_10
            value: 78.619
          - type: map_at_100
            value: 78.915
          - type: map_at_1000
            value: 78.918
          - type: map_at_3
            value: 76.967
          - type: map_at_5
            value: 77.922
          - type: mrr_at_1
            value: 70.917
          - type: mrr_at_10
            value: 78.64
          - type: mrr_at_100
            value: 78.935
          - type: mrr_at_1000
            value: 78.938
          - type: mrr_at_3
            value: 77.081
          - type: mrr_at_5
            value: 77.972
          - type: ndcg_at_1
            value: 70.917
          - type: ndcg_at_10
            value: 82.186
          - type: ndcg_at_100
            value: 83.487
          - type: ndcg_at_1000
            value: 83.589
          - type: ndcg_at_3
            value: 78.874
          - type: ndcg_at_5
            value: 80.548
          - type: precision_at_1
            value: 70.917
          - type: precision_at_10
            value: 9.431000000000001
          - type: precision_at_100
            value: 1.001
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 28.275
          - type: precision_at_5
            value: 17.829
          - type: recall_at_1
            value: 70.706
          - type: recall_at_10
            value: 93.256
          - type: recall_at_100
            value: 99.05199999999999
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_3
            value: 84.247
          - type: recall_at_5
            value: 88.251
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 25.989
          - type: map_at_10
            value: 80.882
          - type: map_at_100
            value: 83.63199999999999
          - type: map_at_1000
            value: 83.663
          - type: map_at_3
            value: 55.772
          - type: map_at_5
            value: 70.598
          - type: mrr_at_1
            value: 90.14999999999999
          - type: mrr_at_10
            value: 93.30000000000001
          - type: mrr_at_100
            value: 93.363
          - type: mrr_at_1000
            value: 93.366
          - type: mrr_at_3
            value: 93.083
          - type: mrr_at_5
            value: 93.206
          - type: ndcg_at_1
            value: 90.14999999999999
          - type: ndcg_at_10
            value: 88.016
          - type: ndcg_at_100
            value: 90.52900000000001
          - type: ndcg_at_1000
            value: 90.84400000000001
          - type: ndcg_at_3
            value: 86.529
          - type: ndcg_at_5
            value: 85.65899999999999
          - type: precision_at_1
            value: 90.14999999999999
          - type: precision_at_10
            value: 42.295
          - type: precision_at_100
            value: 4.826
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 77.717
          - type: precision_at_5
            value: 65.81
          - type: recall_at_1
            value: 25.989
          - type: recall_at_10
            value: 89.446
          - type: recall_at_100
            value: 97.832
          - type: recall_at_1000
            value: 99.568
          - type: recall_at_3
            value: 58.223
          - type: recall_at_5
            value: 75.411
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 49.6
          - type: map_at_10
            value: 59.512
          - type: map_at_100
            value: 60.059
          - type: map_at_1000
            value: 60.077999999999996
          - type: map_at_3
            value: 56.882999999999996
          - type: map_at_5
            value: 58.298
          - type: mrr_at_1
            value: 49.6
          - type: mrr_at_10
            value: 59.512
          - type: mrr_at_100
            value: 60.059
          - type: mrr_at_1000
            value: 60.077999999999996
          - type: mrr_at_3
            value: 56.882999999999996
          - type: mrr_at_5
            value: 58.298
          - type: ndcg_at_1
            value: 49.6
          - type: ndcg_at_10
            value: 64.71000000000001
          - type: ndcg_at_100
            value: 67.238
          - type: ndcg_at_1000
            value: 67.74
          - type: ndcg_at_3
            value: 59.275
          - type: ndcg_at_5
            value: 61.805
          - type: precision_at_1
            value: 49.6
          - type: precision_at_10
            value: 8.12
          - type: precision_at_100
            value: 0.927
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 22.067
          - type: precision_at_5
            value: 14.46
          - type: recall_at_1
            value: 49.6
          - type: recall_at_10
            value: 81.2
          - type: recall_at_100
            value: 92.7
          - type: recall_at_1000
            value: 96.6
          - type: recall_at_3
            value: 66.2
          - type: recall_at_5
            value: 72.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 47.98768757214313
          - type: f1
            value: 35.24243089488371
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 87.01688555347093
          - type: ap
            value: 56.39167630414159
          - type: f1
            value: 81.91756262306008
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 71.17874301231225
          - type: cos_sim_spearman
            value: 77.47936067899236
          - type: euclidean_pearson
            value: 76.3241109984839
          - type: euclidean_spearman
            value: 77.47936511149533
          - type: manhattan_pearson
            value: 76.3334642249198
          - type: manhattan_spearman
            value: 77.48889610190774
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 27.96872431410137
          - type: mrr
            value: 26.92023809523809
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 66.83099999999999
          - type: map_at_10
            value: 75.945
          - type: map_at_100
            value: 76.259
          - type: map_at_1000
            value: 76.27000000000001
          - type: map_at_3
            value: 74.22999999999999
          - type: map_at_5
            value: 75.318
          - type: mrr_at_1
            value: 69.069
          - type: mrr_at_10
            value: 76.491
          - type: mrr_at_100
            value: 76.764
          - type: mrr_at_1000
            value: 76.775
          - type: mrr_at_3
            value: 75.01
          - type: mrr_at_5
            value: 75.934
          - type: ndcg_at_1
            value: 69.069
          - type: ndcg_at_10
            value: 79.557
          - type: ndcg_at_100
            value: 80.946
          - type: ndcg_at_1000
            value: 81.23700000000001
          - type: ndcg_at_3
            value: 76.31099999999999
          - type: ndcg_at_5
            value: 78.121
          - type: precision_at_1
            value: 69.069
          - type: precision_at_10
            value: 9.58
          - type: precision_at_100
            value: 1.027
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.73
          - type: precision_at_5
            value: 18.201
          - type: recall_at_1
            value: 66.83099999999999
          - type: recall_at_10
            value: 90.118
          - type: recall_at_100
            value: 96.377
          - type: recall_at_1000
            value: 98.656
          - type: recall_at_3
            value: 81.516
          - type: recall_at_5
            value: 85.798
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.2649630127774
          - type: f1
            value: 65.96868218344183
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.13382649630127
          - type: f1
            value: 72.69980239148315
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 51.2
          - type: map_at_10
            value: 57.715
          - type: map_at_100
            value: 58.233999999999995
          - type: map_at_1000
            value: 58.289
          - type: map_at_3
            value: 56.483000000000004
          - type: map_at_5
            value: 57.193000000000005
          - type: mrr_at_1
            value: 51.2
          - type: mrr_at_10
            value: 57.714
          - type: mrr_at_100
            value: 58.233000000000004
          - type: mrr_at_1000
            value: 58.288
          - type: mrr_at_3
            value: 56.483000000000004
          - type: mrr_at_5
            value: 57.193000000000005
          - type: ndcg_at_1
            value: 51.2
          - type: ndcg_at_10
            value: 60.63499999999999
          - type: ndcg_at_100
            value: 63.458000000000006
          - type: ndcg_at_1000
            value: 64.992
          - type: ndcg_at_3
            value: 58.11300000000001
          - type: ndcg_at_5
            value: 59.391000000000005
          - type: precision_at_1
            value: 51.2
          - type: precision_at_10
            value: 6.97
          - type: precision_at_100
            value: 0.836
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 20.933
          - type: precision_at_5
            value: 13.18
          - type: recall_at_1
            value: 51.2
          - type: recall_at_10
            value: 69.69999999999999
          - type: recall_at_100
            value: 83.6
          - type: recall_at_1000
            value: 95.8
          - type: recall_at_3
            value: 62.8
          - type: recall_at_5
            value: 65.9
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 73.39
          - type: f1
            value: 72.85739851837214
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 73.36220898754738
          - type: cos_sim_ap
            value: 78.50045169678386
          - type: cos_sim_f1
            value: 75.3875968992248
          - type: cos_sim_precision
            value: 69.65085049239033
          - type: cos_sim_recall
            value: 82.15417106652588
          - type: dot_accuracy
            value: 73.36220898754738
          - type: dot_ap
            value: 78.50039148302838
          - type: dot_f1
            value: 75.3875968992248
          - type: dot_precision
            value: 69.65085049239033
          - type: dot_recall
            value: 82.15417106652588
          - type: euclidean_accuracy
            value: 73.36220898754738
          - type: euclidean_ap
            value: 78.50045169678386
          - type: euclidean_f1
            value: 75.3875968992248
          - type: euclidean_precision
            value: 69.65085049239033
          - type: euclidean_recall
            value: 82.15417106652588
          - type: manhattan_accuracy
            value: 73.09149972929075
          - type: manhattan_ap
            value: 78.40911589236852
          - type: manhattan_f1
            value: 75.3623188405797
          - type: manhattan_precision
            value: 69.45681211041853
          - type: manhattan_recall
            value: 82.36536430834214
          - type: max_accuracy
            value: 73.36220898754738
          - type: max_ap
            value: 78.50045169678386
          - type: max_f1
            value: 75.3875968992248
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 91.81000000000002
          - type: ap
            value: 89.35809579688139
          - type: f1
            value: 91.79220350456818
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 30.06960208048424
          - type: cos_sim_spearman
            value: 36.21568893707218
          - type: euclidean_pearson
            value: 36.3789158810154
          - type: euclidean_spearman
            value: 36.21568740241203
          - type: manhattan_pearson
            value: 36.318190228955935
          - type: manhattan_spearman
            value: 36.16813420759451
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 36.779942621488736
          - type: cos_sim_spearman
            value: 38.73716529566492
          - type: euclidean_pearson
            value: 37.134107612179605
          - type: euclidean_spearman
            value: 38.737099842399545
          - type: manhattan_pearson
            value: 37.17579625045808
          - type: manhattan_spearman
            value: 38.746051563332315
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 65.97416499132073
          - type: cos_sim_spearman
            value: 68.87894646940939
          - type: euclidean_pearson
            value: 67.2366929400408
          - type: euclidean_spearman
            value: 68.87894646940939
          - type: manhattan_pearson
            value: 67.30590304353478
          - type: manhattan_spearman
            value: 68.90546655032796
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 78.99420906581649
          - type: cos_sim_spearman
            value: 79.36553449000968
          - type: euclidean_pearson
            value: 78.77734144763518
          - type: euclidean_spearman
            value: 79.36545230850567
          - type: manhattan_pearson
            value: 78.82512507141092
          - type: manhattan_spearman
            value: 79.43977311125059
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 66.38018284846501
          - type: mrr
            value: 76.11180965277104
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 27.423
          - type: map_at_10
            value: 77.206
          - type: map_at_100
            value: 80.83500000000001
          - type: map_at_1000
            value: 80.9
          - type: map_at_3
            value: 54.190000000000005
          - type: map_at_5
            value: 66.662
          - type: mrr_at_1
            value: 90.049
          - type: mrr_at_10
            value: 92.48100000000001
          - type: mrr_at_100
            value: 92.567
          - type: mrr_at_1000
            value: 92.571
          - type: mrr_at_3
            value: 92.07
          - type: mrr_at_5
            value: 92.32900000000001
          - type: ndcg_at_1
            value: 90.049
          - type: ndcg_at_10
            value: 84.69
          - type: ndcg_at_100
            value: 88.254
          - type: ndcg_at_1000
            value: 88.89399999999999
          - type: ndcg_at_3
            value: 86.091
          - type: ndcg_at_5
            value: 84.685
          - type: precision_at_1
            value: 90.049
          - type: precision_at_10
            value: 42.141
          - type: precision_at_100
            value: 5.016
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 75.352
          - type: precision_at_5
            value: 63.176
          - type: recall_at_1
            value: 27.423
          - type: recall_at_10
            value: 83.595
          - type: recall_at_100
            value: 95.21
          - type: recall_at_1000
            value: 98.503
          - type: recall_at_3
            value: 55.84400000000001
          - type: recall_at_5
            value: 69.987
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.927
          - type: f1
            value: 50.16838216110367
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 60.85131720842154
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 57.0921610946628
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 56.99999999999999
          - type: map_at_10
            value: 67.611
          - type: map_at_100
            value: 68.095
          - type: map_at_1000
            value: 68.10300000000001
          - type: map_at_3
            value: 65.75
          - type: map_at_5
            value: 66.93
          - type: mrr_at_1
            value: 56.89999999999999
          - type: mrr_at_10
            value: 67.561
          - type: mrr_at_100
            value: 68.045
          - type: mrr_at_1000
            value: 68.053
          - type: mrr_at_3
            value: 65.7
          - type: mrr_at_5
            value: 66.88
          - type: ndcg_at_1
            value: 56.99999999999999
          - type: ndcg_at_10
            value: 72.25200000000001
          - type: ndcg_at_100
            value: 74.542
          - type: ndcg_at_1000
            value: 74.725
          - type: ndcg_at_3
            value: 68.47
          - type: ndcg_at_5
            value: 70.583
          - type: precision_at_1
            value: 56.99999999999999
          - type: precision_at_10
            value: 8.66
          - type: precision_at_100
            value: 0.972
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 25.433
          - type: precision_at_5
            value: 16.28
          - type: recall_at_1
            value: 56.99999999999999
          - type: recall_at_10
            value: 86.6
          - type: recall_at_100
            value: 97.2
          - type: recall_at_1000
            value: 98.6
          - type: recall_at_3
            value: 76.3
          - type: recall_at_5
            value: 81.39999999999999
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 87.10000000000001
          - type: ap
            value: 70.81766065881429
          - type: f1
            value: 85.5323306120456
license: apache-2.0
language:
  - zh

A try for emebdding model:

The method is the same as the stella-v2, I just extend the length of the context on tao.(I found if you want to use the fully-8k context, you maybe need to convert the model to float32).

Now I'm working on the tao-v2, It will have a different sturcture.

I will release tao-v2 as fast as I can.

Thank you to the open source community.