es-inclusivo-translator

This model is a fine-tuned version of projecte-aina/aguila-7b on the dataset somosnlp/es-inclusive-language.

Languages are powerful tools to communicate ideas, but their use is not impartial. The selection of words carries inherent biases and reflects subjective perspectives. In some cases, language is wielded to enforce ideologies, marginalize certain groups, or promote specific political agendas. Spanish is not the exception to that. For instance, when we say “los alumnos” or “los ingenieros”, we are excluding women from those groups. Similarly, expressions such as “los gitanos” o “los musulmanes” perpetuate discrimination against these communities.

In response to these linguistic challenges, this model offers a way to construct inclusive alternatives in accordance with official guidelines on inclusive language from various Spanish speaking countries. Its purpose is to provide grammatically correct and inclusive solutions to situations where our language choices might otherwise be exclusive. This is a tool that contributes to the fifth of the Sustainable Development Goals: Achieve gender equality and empower all women and girls.

The model works in such a way that, given an input text, it returns the original text rewritten using inclusive language.

It achieves the following results on the evaluation set:

  • Loss: 0.6030

Model description

Social Impact

An inclusive translator holds significant social impact by promoting equity and representation within texts. By rectifying biases ingrained in language and fostering inclusivity, it combats discrimination, amplifies the visibility of marginalized groups, and contributes to the cultivation of a more inclusive and respectful society. This is a tool that contributes to the fifth of the Sustainable Development Goals: Achieve gender equality and empower all women and girls.

Intended uses & limitations

More information needed

How to use

Here is how to use this model:

from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('somosnlp/', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('somosnlp/', trust_remote_code=True,
    quantization_config=bnb_config,
    device_map="auto")

# generation_config
generation_config = model.generation_config
generation_config.max_new_tokens = 100
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

# Define inference function
def translate_es_inclusivo(exclusive_text): 
    
    # generate input prompt
    eval_prompt = f"""Reescribe el siguiente texto utilizando lenguaje inclusivo.\n
      Texto: {exclusive_text}\n
      Texto en lenguaje inclusivo:"""
    
    # tokenize input
    model_input = tokenizer(eval_prompt, return_tensors="pt").to(model.device)
    
    # set max_new_tokens if necessary
    if len(model_input['input_ids'][0]) > 80:
        model.generation_config.max_new_tokens = len(model_input['input_ids'][0]) + 0.2 * len(model_input['input_ids'][0])
    
    # get length of encoded prompt
    prompt_token_len = len(model_input['input_ids'][0])
        
    # generate and decode
    with torch.no_grad():
        inclusive_text = tokenizer.decode(model.generate(**model_input, generation_config=generation_config)[0][prompt_token_len:], 
                                          skip_special_tokens=True)                                                                        
    
    return inclusive_text

##########

input_text = 'Los alumnos atienden a sus profesores'

print(translate_es_inclusivo(input_text))

As it is a heavy model, you may want to use it in 4-bits:

from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import BitsAndBytesConfig
import torch


## Load model in 4bits
# bnb_configuration
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type='nf4',
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False)


# model
model = AutoModelForCausalLM.from_pretrained('somosnlp/', trust_remote_code=True,
    quantization_config=bnb_config,
    device_map="auto")

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('somosnlp/', trust_remote_code=True)

# generation_config
generation_config = model.generation_config
generation_config.max_new_tokens = 100
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

# Define inference function
def translate_es_inclusivo(exclusive_text): 
    
    # generate input prompt
    eval_prompt = f"""Reescribe el siguiente texto utilizando lenguaje inclusivo.\n
      Texto: {exclusive_text}\n
      Texto en lenguaje inclusivo:"""
    
    # tokenize input
    model_input = tokenizer(eval_prompt, return_tensors="pt").to(model.device)
    
    # set max_new_tokens if necessary
    if len(model_input['input_ids'][0]) > 80:
        model.generation_config.max_new_tokens = len(model_input['input_ids'][0]) + 0.2 * len(model_input['input_ids'][0])
    
    # get length of encoded prompt
    prompt_token_len = len(model_input['input_ids'][0])
        
    # generate and decode
    with torch.no_grad():
        inclusive_text = tokenizer.decode(model.generate(**model_input, generation_config=generation_config)[0][prompt_token_len:], 
                                          skip_special_tokens=True)                                                                        
    
    return inclusive_text

##########

input_text = 'Los alumnos atienden a sus profesores'

print(translate_es_inclusivo(input_text))

Training and evaluation data

Training and evaluation data can be found in somosnlp/es-inclusive-language

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 402 0.8020
1.0274 2.0 804 0.7019
0.6745 3.0 1206 0.6515
0.5826 4.0 1608 0.6236
0.5104 5.0 2010 0.6161
0.5104 6.0 2412 0.6149
0.4579 7.0 2814 0.6030
0.4255 8.0 3216 0.6151
0.3898 9.0 3618 0.6209
0.3771 10.0 4020 0.6292

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .