w2v-bert-Telugu-large
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2203
- Wer: 0.2210
- Cer: 0.0392
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.9356 | 0.6579 | 300 | 0.5106 | 0.5659 | 0.1265 |
0.4276 | 1.3158 | 600 | 0.4152 | 0.4787 | 0.0953 |
0.3481 | 1.9737 | 900 | 0.3907 | 0.4076 | 0.0824 |
0.239 | 2.6316 | 1200 | 0.3014 | 0.3680 | 0.0660 |
0.1957 | 3.2895 | 1500 | 0.3159 | 0.3361 | 0.0629 |
0.1454 | 3.9474 | 1800 | 0.2517 | 0.2744 | 0.0489 |
0.1 | 4.6053 | 2100 | 0.2371 | 0.2621 | 0.0469 |
0.0748 | 5.2632 | 2400 | 0.2243 | 0.2469 | 0.0432 |
0.0453 | 5.9211 | 2700 | 0.2188 | 0.2381 | 0.0409 |
0.029 | 6.5789 | 3000 | 0.2203 | 0.2210 | 0.0392 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Anujgr8/w2v-bert-Telugu-large
Base model
facebook/w2v-bert-2.0