wav2vec2-base-Malyalam-large
This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4124
- Wer: 0.4294
- Cer: 0.0876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
5.755 | 2.1622 | 300 | 3.4394 | 1.0 | 1.0 |
1.5526 | 4.3243 | 600 | 0.7064 | 0.7488 | 0.1865 |
0.6682 | 6.4865 | 900 | 0.5412 | 0.6252 | 0.1383 |
0.4698 | 8.6486 | 1200 | 0.4891 | 0.5767 | 0.1271 |
0.3632 | 10.8108 | 1500 | 0.3958 | 0.5024 | 0.1004 |
0.2918 | 12.9730 | 1800 | 0.4565 | 0.5020 | 0.1055 |
0.2335 | 15.1351 | 2100 | 0.4298 | 0.4723 | 0.0981 |
0.1956 | 17.2973 | 2400 | 0.3805 | 0.4466 | 0.0888 |
0.1665 | 19.4595 | 2700 | 0.4039 | 0.4311 | 0.0889 |
0.1447 | 21.6216 | 3000 | 0.4124 | 0.4294 | 0.0876 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 1.18.3
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Anujgr8/wav2vec2-base-Malyalam-large
Base model
facebook/wav2vec2-base-960h